David J. Richardson

List of Publications by Citations

Source: https://exaly.com/author-pdf/4355385/david-j-richardson-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

78 25,591 131 903 h-index g-index citations papers 1,269 32,205 7.03 3.4 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
903	Space-division multiplexing in optical fibres. <i>Nature Photonics</i> , 2013 , 7, 354-362	33.9	1688
902	High power fiber lasers: current status and future perspectives [Invited]. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2010 , 27, B63	1.7	1224
901	All-optical phase and amplitude regenerator for next-generation telecommunications systems. <i>Nature Photonics</i> , 2010 , 4, 690-695	33.9	412
900	Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal. <i>Physical Review Letters</i> , 2000 , 84, 4345-8	7.4	356
899	Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation. <i>Electronics Letters</i> , 1992 , 28, 1391	1.1	339
898	Ultra-low-loss optical fiber nanotapers. <i>Optics Express</i> , 2004 , 12, 2258-63	3.3	325
897	Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. <i>Cellular and Molecular Life Sciences</i> , 2001 , 58, 165-78	10.3	321
896	A search for the electric dipole moment of the neutron. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1990 , 234, 191-196	4.2	306
895	Sensing with microstructured optical fibres. <i>Measurement Science and Technology</i> , 2001 , 12, 854-858	2	266
894	Roadmap of optical communications. <i>Journal of Optics (United Kingdom)</i> , 2016 , 18, 063002	1.7	264
893	Self-similarity in ultrafast nonlinear optics. <i>Nature Physics</i> , 2007 , 3, 597-603	16.2	243
892	Holey optical fibers: an efficient modal model. <i>Journal of Lightwave Technology</i> , 1999 , 17, 1093-1102	4	237
891	Optical fiber nanowires and microwires: fabrication and applications. <i>Advances in Optics and Photonics</i> , 2009 , 1, 107	16.7	232
890	Nonlinearity in holey optical fibers: measurement and future opportunities. <i>Optics Letters</i> , 1999 , 24, 1395-7	3	225
889	Applied physics. Filling the light pipe. <i>Science</i> , 2010 , 330, 327-8	33.3	201
888	Towards high-capacity fibre-optic communications at the speed of light in vacuum. <i>Nature Photonics</i> , 2013 , 7, 279-284	33.9	200
887	Bismuth glass holey fibers with high nonlinearity. <i>Optics Express</i> , 2004 , 12, 5082-7	3.3	196

886	Passively Q-switched 0.1-mJ fiber laser system at 1.53 mum. Optics Letters, 1999, 24, 388-90	3	189
885	Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes. <i>Structure</i> , 2004 , 12, 95-104	5.2	177
884	Thulium-doped fiber amplifier for optical communications at 2 µm. <i>Optics Express</i> , 2013 , 21, 9289-97	3.3	175
883	Energy quantisation in figure eight fibre laser. <i>Electronics Letters</i> , 1992 , 28, 67-68	1.1	174
882	Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers. <i>Optics Express</i> , 2005 , 13, 3728-36	3.3	173
881	Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser. <i>Optics Letters</i> , 1998 , 23, 843-5	3	159
880	Soliton pulse compression in dispersion-decreasing fiber. <i>Optics Letters</i> , 1993 , 18, 476-8	3	158
879	2012 , 50, s31-s42		151
878	Chalcogenide holey fibres. <i>Electronics Letters</i> , 2000 , 36, 1998	1.1	149
877	Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2007 , 13, 738-749	3.8	145
876	Modeling large air fraction holey optical fibers. <i>Journal of Lightwave Technology</i> , 2000 , 18, 50-56	4	144
875	Propagation of cold atoms along a miniature magnetic guide. <i>Physical Review Letters</i> , 2000 , 84, 1371-3	7.4	136
874	Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. <i>Optics Express</i> , 2003 , 11, 3568-73	3.3	133
873	320 fs soliton generation with passively mode-locked erbium fibre laser. <i>Electronics Letters</i> , 1991 , 27, 730	1.1	133
872	High-energy, high-power ytterbium-doped Q-switched fiber laser. <i>Optics Letters</i> , 2000 , 25, 37-9	3	129
871	Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding. <i>Optics Express</i> , 2001 , 9, 714-20	3.3	129
870	Passive harmonic modelocking of a fibre soliton ring laser. <i>Electronics Letters</i> , 1993 , 29, 1860	1.1	129
869	Sequence analysis of subunits of the membrane-bound nitrate reductase from a denitrifying bacterium: the integral membrane subunit provides a prototype for the dihaem electron-carrying arm of a redox loop. <i>Molecular Microbiology</i> , 1995 , 15, 319-31	4.1	128

868	Selfstarting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch. <i>Electronics Letters</i> , 1991 , 27, 542	1.1	124
867	Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window. <i>Optics Express</i> , 2013 , 21, 26450-5	3.3	118
866	73.7 Tb/s (96 x 3 x 256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA. <i>Optics Express</i> , 2012 , 20, B428-38	3.3	118
865	Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating. <i>Optics Letters</i> , 1998 , 23, 328-30	3	117
864	Developing holey fibres for evanescent field devices. <i>Electronics Letters</i> , 1999 , 35, 1188	1.1	117
863	Extruded singlemode non-silica glass holey optical fibres. <i>Electronics Letters</i> , 2002 , 38, 546	1.1	116
862	First demonstration and detailed characterization of a multimode amplifier for Space Division Multiplexed transmission systems. <i>Optics Express</i> , 2011 , 19, B952-7	3.3	114
861	158-microJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier. <i>Optics Letters</i> , 1997 , 22, 378-80	3	114
860	Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating. <i>Optics Express</i> , 2006 , 14, 7617-22	3.3	114
859	Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization. <i>Optics Letters</i> , 1999 , 24, 1203-5	3	111
858	Hollow-core photonic bandgap fibers: technology and applications. <i>Nanophotonics</i> , 2013 , 2, 315-340	6.3	110
857	2R-regenerative all-optical switch based on a highly nonlinear holey fiber. <i>Optics Letters</i> , 2001 , 26, 1233	-5	107
856	Multilevel quantization of optical phase in a novel coherent parametric mixer architecture. <i>Nature Photonics</i> , 2011 , 5, 748-752	33.9	106
855	Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications. <i>Optics Express</i> , 2008 , 16, 13651-6	3.3	105
854	. Journal of Lightwave Technology, 2001 , 19, 1352-1365	4	103
853	Catalytic protein film voltammetry from a respiratory nitrate reductase provides evidence for complex electrochemical modulation of enzyme activity. <i>Biochemistry</i> , 2001 , 40, 11294-307	3.2	102
852	A low-redox potential heme in the dinuclear center of bacterial nitric oxide reductase: implications for the evolution of energy-conserving heme-copper oxidases. <i>Biochemistry</i> , 1999 , 38, 13780-6	3.2	102
851	Small-core silica holey fibers: nonlinearity and confinement loss trade-offs. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2003 , 20, 1427	1.7	100

(2006-1998)

850	High-energy single-transverse-mode Q-switched fiber laser based on a multimode large-mode-area erbium-doped fiber. <i>Optics Letters</i> , 1998 , 23, 1683-5	3	99
849	Demonstration of Berry's phase using stored ultra-cold neutrons. <i>Physical Review Letters</i> , 1988 , 61, 203	0 7 2ρ33	B 99
848	Optical manipulation of microspheres along a subwavelength optical wire. Optics Letters, 2007, 32, 304	1 ₃ 3	96
847	Holey fibers with random cladding distributions. <i>Optics Letters</i> , 2000 , 25, 206-8	3	96
846	. Journal of Lightwave Technology, 2001 , 19, 746-752	4	96
845	Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber. <i>Optics Letters</i> , 2003 , 28, 1951-3	3	95
844	Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs. <i>IEEE Journal of Quantum Electronics</i> , 2001 , 37, 199-206	2	94
843	Micro-channels machined in microstructured optical fibers by femtosecond laser. <i>Optics Express</i> , 2007 , 15, 8731-6	3.3	93
842	Look on the positive side! The orientation, identification and bioenergetics of 'Archaeal' membrane-bound nitrate reductases. <i>FEMS Microbiology Letters</i> , 2007 , 276, 129-39	2.9	92
841	Supercontinuum generation at 1.06 mum in holey fibers with dispersion flattened profiles. <i>Optics Express</i> , 2006 , 14, 4445-51	3.3	90
840	Compound-glass optical nanowires. <i>Electronics Letters</i> , 2005 , 41, 400	1.1	89
839	Large Mode Area Fibers for High Power Applications. <i>Optical Fiber Technology</i> , 1999 , 5, 185-196	2.4	89
838	Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy. <i>Biochemistry</i> , 1999 , 38, 9000-	12 ²	89
837	. Journal of Lightwave Technology, 2005 , 23, 2399-2409	4	88
836	Nonlinear propagation effects in an AlGaAs Bragg grating filter. Optics Letters, 1999, 24, 685-7	3	87
835	Characterization of a self-starting, passively mode-locked fiber ring laser that exploits nonlinear polarization evolution. <i>Optics Letters</i> , 1993 , 18, 358-60	3	87
834	Picosecond fiber MOPA pumped supercontinuum source with 39 W output power. <i>Optics Express</i> , 2010 , 18, 5426-32	3.3	86
833	High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation. <i>Journal of Lightwave Technology</i> , 2006 , 24, 183-190	4	86

832	Optical microfiber coupler for broadband single-mode operation. <i>Optics Express</i> , 2009 , 17, 5273-8	3.3	83
831	Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 440-442	2.2	83
830	Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber. <i>Optics Express</i> , 2013 , 21, 28559-69	3.3	81
829	Suspended-core holey fiber for evanescent-field sensing. <i>Optical Engineering</i> , 2007 , 46, 010503	1.1	79
828	Generation of a 40-GHz pulse stream by pulse multiplication with a sampled fiber Bragg grating. <i>Optics Letters</i> , 2000 , 25, 521-3	3	79
827	High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping. <i>Optics Express</i> , 2009 , 17, 20927-37	3.3	78
826	Understanding bending losses in holey optical fibers. <i>Optics Communications</i> , 2003 , 227, 317-335	2	78
825	Signal peptide-chaperone interactions on the twin-arginine protein transport pathway. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 8460-5	11.5	78
824	Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter. <i>Optics Express</i> , 2008 , 16, 14661-7	3.3	76
823	Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime. <i>Optics Express</i> , 2006 , 14, 3161-70	3.3	76
822	High-efficiency grating-couplers: demonstration of a new design strategy. <i>Scientific Reports</i> , 2017 , 7, 16670	4.9	75
821	Si-rich Silicon Nitride for Nonlinear Signal Processing Applications. <i>Scientific Reports</i> , 2017 , 7, 22	4.9	75
820	High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 1013-1015	2.2	75
819	Greater than 20%-efficient frequency doubling of 1532-nm nanosecond pulses in quasi-phase-matched germanosilicate optical fibers. <i>Optics Letters</i> , 1999 , 24, 208-10	3	75
818	100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber. <i>Optics Express</i> , 2015 , 23, 4946-51	3.3	74
817	Pulse repetition rates in passive, selfstarting, femtosecond soliton fibre laser. <i>Electronics Letters</i> , 1991 , 27, 1451	1.1	74
816	Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 μm. <i>Optics Express</i> , 2013 , 21, 24281-7	3.3	73
815	Fiber LPG Mode Converters and Mode Selection Technique for Multimode SDM. <i>IEEE Photonics Technology Letters</i> , 2012 , 24, 1922-1925	2.2	73

814	The mathematical modelling of capillary drawing for holey fibre manufacture. <i>Journal of Engineering Mathematics</i> , 2002 , 43, 201-227	1.2	73	
813	Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device. <i>Optics Express</i> , 2007 , 15, 852-64	3.3	7 2	
812	High-resolution microwave frequency transfer over an 86-km-long optical fiber network using a mode-locked laser. <i>Optics Letters</i> , 2011 , 36, 511-3	3	71	
811	Supercontinuum generation in non-silica fibers. <i>Optical Fiber Technology</i> , 2012 , 18, 327-344	2.4	70	
810	Design scaling rules for 2R-optical self-phase modulation-based regenerators. <i>Optics Express</i> , 2007 , 15, 5100-13	3.3	68	
809	High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs. <i>Optics Express</i> , 2006 , 14, 9611-6	3.3	67	
808	Raman effects in a highly nonlinear holey fiber: amplification and modulation. <i>Optics Letters</i> , 2002 , 27, 424-6	3	67	
807	Intensity measurement bend sensors based on periodically tapered soft glass fibers. <i>Optics Letters</i> , 2011 , 36, 558-60	3	65	
806	Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LPIpump configuration. <i>Optics Express</i> , 2012 , 20, 20835-43	3.3	65	
805	Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system. <i>Optics Express</i> , 2006 , 14, 10996-1001	3.3	64	
804	Cladding pumped few-mode EDFA for mode division multiplexed transmission. <i>Optics Express</i> , 2014 , 22, 29008-13	3.3	63	
803	Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide. <i>Optics Express</i> , 2009 , 17, 20393-400	3.3	63	
802	Stretched pulse Yb(3+)silica fiber laser. <i>Optics Letters</i> , 1997 , 22, 316-8	3	63	
801	Demonstration of a four-channel WDM/OCDMA system using 255-chip 320-Gchip/s quarternary phase coding gratings. <i>IEEE Photonics Technology Letters</i> , 2002 , 14, 227-229	2.2	63	
800	Robustly single mode hollow core photonic bandgap fiber. <i>Optics Express</i> , 2008 , 16, 4337-46	3.3	62	
799	Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers. <i>Optics Express</i> , 2006 , 14, 7974-85	3.3	62	
798	A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement. <i>IEEE Photonics Technology Letters</i> , 2002 , 14, 876-878	2.2	61	
797	Open conformation of a flavocytochrome c3 fumarate reductase. <i>Nature Structural Biology</i> , 1999 , 6, 1104	4-7	61	

796	All-fiber, ultra-wideband tunable laser at 2 fh. Optics Letters, 2013, 38, 4739-42	3	59
795	Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications. <i>Journal of Lightwave Technology</i> , 2017 , 35, 437-442	4	58
794	Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source. <i>Optics Express</i> , 2002 , 10, 382-7	3.3	58
793	Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3+ by Shewanella frigidimarina NCIMB400. <i>Biochemical Journal</i> , 1999 , 342, 439-448	3.8	58
792	Optical Parabolic Pulse Generation and Applications. <i>IEEE Journal of Quantum Electronics</i> , 2009 , 45, 14	82 <u>-</u> 148	9 57
791	Practical low-noise stretched-pulse Yb(3+)-doped fiber laser. <i>Optics Letters</i> , 2002 , 27, 291-3	3	56
790	All-optical AND gate based on coupled gap-soliton formation in a fiber Bragg grating. <i>Optics Letters</i> , 1998 , 23, 259-61	3	56
789	114 Gbit/s soliton train generation through Raman self-scattering of a dual frequency beat signal in dispersion decreasing optical fiber. <i>Applied Physics Letters</i> , 1993 , 63, 293-295	3.4	56
788	High Capacity Mode-Division Multiplexed Optical Transmission in a Novel 37-cell Hollow-Core Photonic Bandgap Fiber. <i>Journal of Lightwave Technology</i> , 2014 , 32, 854-863	4	55
787	Control of periplasmic nitrate reductase gene expression (napEDABC) from Paracoccus pantotrophus in response to oxygen and carbon substrates. <i>Microbiology (United Kingdom)</i> , 2000 , 146 (Pt 11), 2977-2985	2.9	55
786	100 kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 fh. <i>Optics Letters</i> , 2013 , 38, 1615-7	3	54
785	Detailed characterization of afiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation. <i>Optics Express</i> , 2010 , 18, 4130-7	3.3	54
784	Dissemination of an optical frequency comb over fiber with 3 🛮 0(-18) fractional accuracy. <i>Optics Express</i> , 2012 , 20, 1775-82	3.3	54
783	Picosecond soliton pulse compressor based on dispersion decreasing fibre. <i>Electronics Letters</i> , 1992 , 28, 1842	1.1	54
782	The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers. <i>Optics Express</i> , 2005 , 13, 9115-24	3.3	53
781	Optical Pulse Compression in Fiber Bragg Gratings. <i>Physical Review Letters</i> , 1997 , 79, 4566-4569	7.4	52
780	Extruded singlemode, high-nonlinearity, tellurite glass holey fibre. <i>Electronics Letters</i> , 2005 , 41, 835	1.1	52
779	Ultrashort-pulse Yb3+-fiber-based laser and amplifier system producing >25-W average power. Optics Letters, 2004 , 29, 2073-5	3	52

(1994-2002)

778	Temperature and wavelength tuning of second-, third-, and fourth-harmonic generation in a two-dimensional hexagonally poled nonlinear crystal. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2002 , 19, 2263	1.7	52	
777	Experimental demonstration of 100 GHz dark soliton generation and propagation using a dispersion decreasing fibre. <i>Electronics Letters</i> , 1994 , 30, 1326-1327	1.1	52	
776	Comparative study of large-mode holey and conventional fibers. <i>Optics Letters</i> , 2001 , 26, 1045-7	3	51	
775	Characterization of the paramagnetic iron-containing redox centres of Thiosphaera pantotropha periplasmic nitrate reductase. <i>FEBS Letters</i> , 1994 , 345, 76-80	3.8	50	
774	The characteristics of NDM-producing Klebsiella pneumoniae from Canada. <i>Diagnostic Microbiology and Infectious Disease</i> , 2011 , 71, 106-9	2.9	49	
773	Investigation of Brillouin effects in small-core holey optical fiber: lasing and scattering. <i>Optics Letters</i> , 2002 , 27, 927-9	3	49	
772	1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band Dense SDM Transmission over 205.6-km of Single-mode Heterogeneous Multi-core Fiber using 96-Gbaud PDM-16QAM Channels 2017 ,		49	
771	. Journal of Lightwave Technology, 2017 , 35, 1363-1368	4	48	
770	Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. <i>Nature Communications</i> , 2018 , 9, 182	17.4	48	
769	Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission. <i>Journal of Lightwave Technology</i> , 2016 , 34, 104-113	4	48	
768	. IEEE Photonics Technology Letters, 2014 , 26, 1100-1103	2.2	48	
767	Archon: A Function Programmable Optical Interconnect Architecture for Transparent Intra and Inter Data Center SDM/TDM/WDM Networking. <i>Journal of Lightwave Technology</i> , 2015 , 33, 1586-1595	4	48	
766	Tunable, femtosecond pulse source operating in the range 106133 m based on an Yb^3+-doped holey fiber amplifier. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2002 , 19, 1286	1.7	48	
765	A 103 W erbium Utterbium co-doped large-core fiber laser. <i>Optics Communications</i> , 2003 , 227, 159-163	2	47	
764	Inter-modal four-wave mixing study in a two-mode fiber. <i>Optics Express</i> , 2016 , 24, 30338-30349	3.3	46	
763	Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation. <i>Optics Express</i> , 2007 , 15, 17577-86	3.3	45	
762	Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 829-831	2.2	45	
761	Mo(V) electron paramagnetic resonance signals from the periplasmic nitrate reductase of Thiosphaera pantotropha. <i>FEBS Journal</i> , 1994 , 226, 789-98		45	

760	Broadband high birefringence and polarizing hollow core antiresonant fibers. <i>Optics Express</i> , 2016 , 24, 22943-22958	3.3	45
759	High-Capacity Directly Modulated Optical Transmitter for 2-th Spectral Region. <i>Journal of Lightwave Technology</i> , 2015 , 33, 1373-1379	4	44
758	Dual mode fused optical fiber couplers suitable for mode division multiplexed transmission. <i>Optics Express</i> , 2013 , 21, 24326-31	3.3	44
757	All-solid highly nonlinear singlemode fibers with a tailored dispersion profile. <i>Optics Express</i> , 2011 , 19, 66-80	3.3	44
756	Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber. <i>Optics Letters</i> , 2014 , 39, 295-8	3	43
755	Polarisation maintaining 100W Yb-fiber MOPA producing microJ pulses tunable in duration from 1 to 21 ps. <i>Optics Express</i> , 2010 , 18, 14385-94	3.3	43
754	Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror. <i>Applied Physics Letters</i> , 1999 , 74, 3619-3621	3.4	43
753	Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers. <i>Optics Express</i> , 2012 , 20, 20980-91	3.3	42
752	Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 1997 , 3, 1087-1096	3.8	42
751	Experimental demonstration of intermodal dispersion in a two-core optical fibre. <i>Optics Communications</i> , 1997 , 143, 189-192	2	42
75°	A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 437-439	2.2	42
749	The role of confinement loss in highly nonlinear silica holey fibers. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 1246-1248	2.2	42
748	Dissimilatory iron(III) reduction by. <i>Microbiology (United Kingdom)</i> , 1996 , 142, 765-774	2.9	42
747	Amplification of 12 OAM Modes in an air-core erbium doped fiber. <i>Optics Express</i> , 2015 , 23, 28341-8	3.3	41
746	Ultralow thermal sensitivity of phase and propagation delay in hollow core optical fibres. <i>Scientific Reports</i> , 2015 , 5, 15447	4.9	41
745	Generation of localized pulses from incoherent wave in optical fiber lines made of concatenated Mamyshev regenerators. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2008 , 25, 1537	1.7	41
744	Mid-infrared supercontinuum generation in suspended core tellurite microstructured optical fibers. <i>Optics Letters</i> , 2015 , 40, 2237-40	3	40
743	Three mode Er3+ ring-doped fiber amplifier for mode-division multiplexed transmission. <i>Optics Express</i> , 2013 , 21, 10383-92	3.3	40

742	Pulse compression at 1.06 microm in dispersion-decreasing holey fibers. <i>Optics Letters</i> , 2006 , 31, 3504-6	53	40
741	Nonlinear switching in a 20-cm-long fiber Bragg grating. <i>Optics Letters</i> , 2000 , 25, 536-8	3	40
740	Highly efficient second-harmonic and sum-frequency generation of nanosecond pulses in a cascaded erbium-doped fiber:periodically poled lithium niobate source. <i>Optics Letters</i> , 1998 , 23, 162-4	3	40
739	A photonic switch based on a gigantic, reversible optical nonlinearity of liquefying gallium. <i>Applied Physics Letters</i> , 1998 , 73, 1787-1789	3.4	40
738	Effect of carbon substrate and aeration on nitrate reduction and expression of the periplasmic and membrane-bound nitrate reductases in carbon-limited continuous cultures of Pd1222. <i>Microbiology (United Kingdom)</i> , 1997 , 143, 3767-3774	2.9	40
737	20 🗹 60-Gb/s Space-division-multiplexed 32QAM transmission over 60 km few-mode fiber. <i>Optics Express</i> , 2014 , 22, 749-55	3.3	39
736	New Delhi metallo-beta-lactamase, Ontario, Canada. <i>Emerging Infectious Diseases</i> , 2011 , 17, 306-7	10.2	39
735	Fibre Bragg grating compression-tuned over 110 nm. <i>Electronics Letters</i> , 2003 , 39, 509	1.1	39
734	A 36-channel x 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 1689-1691	2.2	39
733	Holey optical fibres: Fundamental properties and device applications. <i>Comptes Rendus Physique</i> , 2003 , 4, 175-186	1.4	38
732	Optical parametric oscillation in periodically poled lithium niobate driven by a diode-pumped Q-switched erbium fiber laser. <i>Optics Letters</i> , 1998 , 23, 582-4	3	38
731	Long-Haul Dense Space-Division Multiplexed Transmission Over Low-Crosstalk Heterogeneous 32-Core Transmission Line Using a Partial Recirculating Loop System. <i>Journal of Lightwave Technology</i> , 2017 , 35, 488-498	4	37
730	Highly birefringent silica microfiber. <i>Optics Letters</i> , 2010 , 35, 378-80	3	37
729	Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber. <i>Optics Letters</i> , 2009 , 34, 2369-71	3	37
728	Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths. <i>Optical Fiber Technology</i> , 2010 , 16, 378-391	2.4	37
727	Polarization-maintaining optical microfiber. <i>Optics Letters</i> , 2010 , 35, 2034-6	3	36
726	Q-switched erbium doped fibre laser utilising a novel large mode area fibre. <i>Electronics Letters</i> , 1997 , 33, 393	1.1	36
725	Cold atoms probe the magnetic field near a wire. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2004 , 37, L15-L20	1.3	36

724	Optical Orbital Angular Momentum Amplifier Based on an Air-Hole Erbium-Doped Fiber. <i>Journal of Lightwave Technology</i> , 2017 , 35, 430-436	4	35
723	Characterization of Mode Coupling in Few-Mode FBG With Selective Mode Excitation. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 1713-1716	2.2	35
722	New optical fibres for high-capacity optical communications. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2016 , 374,	3	35
721	Frequency comb generation in a silicon ring resonator modulator. <i>Optics Express</i> , 2018 , 26, 790-796	3.3	35
720	32-core Dense SDM Unidirectional Transmission of PDM-16QAM Signals Over 1600 km Using Crosstalk-managed Single-mode Heterogeneous Multicore Transmission Line 2016 ,		35
719	Broadband telecom to mid-infrared supercontinuum generation in a dispersion-engineered silicon germanium waveguide. <i>Optics Letters</i> , 2015 , 40, 4118-21	3	34
718	Compensation of Linear Distortions by Using XPM With Parabolic Pulses as a Time Lens. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1097-1099	2.2	34
717	Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers. <i>Optics Express</i> , 2007 , 15, 596-601	3.3	34
716	Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers. <i>Optics Letters</i> , 2016 , 41, 2197-200	3	34
715	. IEEE Journal of Selected Topics in Quantum Electronics, 2012 , 18, 689-700	3.8	33
714	Mitigation of Nonlinear Effects on WDM QAM Signals Enabled by Optical Phase Conjugation With Efficient Bandwidth Utilization. <i>Journal of Lightwave Technology</i> , 2017 , 35, 971-978	4	33
713	Multi-element fiber technology for space-division multiplexing applications. <i>Optics Express</i> , 2014 , 22, 3787-96	3.3	32
712	Homodyne OFDM with Optical Injection Locking for Carrier Recovery. <i>Journal of Lightwave Technology</i> , 2015 , 33, 34-41	4	32
711	Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell. <i>Sensors and Actuators B: Chemical</i> , 2009 , 139, 30-34	8.5	32
710	UV generation in a pure-silica holey fiber. Applied Physics B: Lasers and Optics, 2003, 77, 291-298	1.9	32
709	Nonlinear switching in fibre Bragg gratings. <i>Optics Express</i> , 1998 , 3, 447-53	3.3	32
708	High Power Diode-Seeded Fiber Amplifiers at 2 harmonic for Architectures to Applications. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2014 , 20, 525-536	3.8	31
707	Direct Selection and Amplification of Individual Narrowly Spaced Optical Comb Modes Via Injection Locking: Design and Characterization. <i>Journal of Lightwave Technology</i> , 2013 , 31, 2287-2295	4	31

(2001-2017)

706	32-core erbium/ytterbium-doped multicore fiber amplifier for next generation space-division multiplexed transmission system. <i>Optics Express</i> , 2017 , 25, 32887	3.3	31
705	Remnant signal peptides on non-exported enzymes: implications for the evolution of prokaryotic respiratory chains. <i>Microbiology (United Kingdom)</i> , 2009 , 155, 3992-4004	2.9	31
704	Supercontinuum generation in tapered bismuth silicate fibres. Electronics Letters, 2005, 41, 795	1.1	31
703	Amplification of femtosecond pulses in a passive, all-fiber soliton source. <i>Optics Letters</i> , 1992 , 17, 1596	-85	31
702	2015 , 53, 44-51		30
701	Anti-resonant hexagram hollow core fibers. <i>Optics Express</i> , 2015 , 23, 1289-99	3.3	30
700	Mode Coupling Effects in Ring-Core Fibers for Space-Division Multiplexing Systems. <i>Journal of Lightwave Technology</i> , 2016 , 34, 3365-3372	4	30
699	Minimizing differential modal gain in cladding-pumped EDFAs supporting four and six mode groups. <i>Optics Express</i> , 2014 , 22, 21499-507	3.3	30
698	200 W Diffraction limited, single-polarization, all-fiber picosecond MOPA. Optics Express, 2013, 21, 258	83 3. 9	30
697	Large aperture PPMgLN based high-power optical parametric oscillator at 3.8 µm pumped by a nanosecond linearly polarized fiber MOPA. <i>Optics Express</i> , 2012 , 20, 15008-14	3.3	30
696	High-power, high-brightness, mJ Q-switched ytterbium-doped fibre laser. <i>Electronics Letters</i> , 2004 , 40, 928	1.1	30
695	Modelocked laser based on ytterbium doped holey fibre. <i>Electronics Letters</i> , 2001 , 37, 560	1.1	30
694	Noise properties and phase resolution of interferometer systems interrogated by narrowband fiber ASE sources. <i>Journal of Lightwave Technology</i> , 1999 , 17, 2327-2335	4	30
693	Dense WDM transmission at 2 th enabled by an arrayed waveguide grating. <i>Optics Letters</i> , 2015 , 40, 3308-11	3	29
692	. IEEE Journal of Selected Topics in Quantum Electronics, 2012 , 18, 859-869	3.8	29
691	Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm. <i>Optics Express</i> , 2009 , 17, 20249-55	3.3	29
690	Identification of an assimilatory nitrate reductase in mutants of Paracoccus denitrificans GB17 deficient in nitrate respiration. <i>Archives of Microbiology</i> , 1997 , 167, 61-6	3	29
689	Phase encoding and decoding of short pulses at 10 Gb/s using superstructured fiber Bragg gratings. <i>IEEE Photonics Technology Letters</i> , 2001 , 13, 154-156	2.2	29

688	High quality soliton loss-compensation in 38 km dispersion-decreasing fibre. <i>Electronics Letters</i> , 1995 , 31, 1681-1682	1.1	29
687	High gain holmium-doped fibre amplifiers. <i>Optics Express</i> , 2016 , 24, 13946-56	3.3	29
686	Compact high-power tunable three-level operation of double cladding Nd-doped fiber laser. <i>IEEE Photonics Technology Letters</i> , 2005 , 17, 306-308	2.2	28
685	Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range. <i>Electronics Letters</i> , 2001 , 37, 1116	1.1	28
684	. IEEE Photonics Technology Letters, 1993 , 5, 492-494	2.2	28
683	70 Gbit/s fibre based source of fundamental solitons at 1550 nm. <i>Electronics Letters</i> , 1992 , 28, 1210	1.1	28
682	Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR. <i>Optics Letters</i> , 2017 , 42, 2571-2574	3	27
681	First demonstration of all-optical QPSK signal regeneration in a novel multi-format phase sensitive amplifier 2010 ,		27
680	Experimental observation of nonlinear pulse compression in nonuniform Bragg gratings. <i>Optics Letters</i> , 1997 , 22, 1837-9	3	27
679	Features of a twin-arginine signal peptide required for recognition by a Tat proofreading chaperone. <i>FEBS Letters</i> , 2008 , 582, 3979-84	3.8	27
678	Square core jacketed air-clad fiber. <i>Optics Express</i> , 2006 , 14, 10345-50	3.3	27
677	Filtering effects in a spectrum-sliced WDM system using SOA-based noise reduction. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 680-682	2.2	27
676	Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices. <i>Applied Physics Letters</i> , 2005 , 87, 081110	3.4	27
675	Hollow Core NANF with 0.28 dB/km Attenuation in the C and L Bands 2020 ,		27
674	Very low threshold Sagnac switch incorporating an erbium doped fibre amplifier. <i>Electronics Letters</i> , 1990 , 26, 1779	1.1	27
673	MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers. <i>Optics Express</i> , 2015 , 23, 312-29	3.3	26
672	Optical properties of silicon germanium waveguides at telecommunication wavelengths. <i>Optics Express</i> , 2013 , 21, 16690-701	3.3	26
671	Compact, high-pulse-energy, picosecond optical parametric oscillator. <i>Optics Letters</i> , 2010 , 35, 3580-2	3	26

(2014-2008)

. Journal of Lightwave Technology, 2006 , 24, 357-364		
	4	26
Polarization mode dispersion reduction in spun large mode area silica holey fibres. <i>Optics Express</i> , 2004 , 12, 1972-7	3.3	26
. Journal of Lightwave Technology, 2002 , 20, 36-46	4	26
All-fiber sliding-frequency Er (3+) / Yb (3+) soliton laser. <i>Optics Letters</i> , 1995 , 20, 2381	3	26
Photonic lantern broadband orbital angular momentum mode multiplexer. <i>Optics Express</i> , 2018 , 26, 30	0 <u>4</u> 2-30	056
Heterogeneous Space-Division Multiplexing and Joint Wavelength Switching Demonstration 2015,		25
How to make the propagation time through an optical fiber fully insensitive to temperature variations. <i>Optica</i> , 2017 , 4, 659	8.6	25
Polarization-Assisted Phase-Sensitive Processor. <i>Journal of Lightwave Technology</i> , 2015 , 33, 1166-1174	4	25
Highly Scalable Amplified Hybrid TDM/DWDM Array Architecture for Interferometric Fiber-Optic Sensor Systems. <i>Journal of Lightwave Technology</i> , 2013 , 31, 882-888	4	25
Science and technology challenges in XXIst century optical communications. <i>Comptes Rendus Physique</i> , 2011 , 12, 387-416	1.4	25
Optimizing the pumping configuration for the power scaling of in-band pumped erbium doped fiber amplifiers. <i>Optics Express</i> , 2012 , 20, 13886-95	3.3	25
Soliton Spectral Tunneling in Dispersion-Controlled Holey Fibers. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1414-1416	2.2	25
Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration. <i>Optics Express</i> , 2008 , 16, 2264-75	3.3	25
Ytterbium-doped large-core fibre laser with 272 W output power. <i>Electronics Letters</i> , 2003 , 39, 977	1.1	25
Broad-band second-harmonic generation in holey optical fibers. <i>IEEE Photonics Technology Letters</i> , 2001 , 13, 981-983	2.2	25
High-power chirped-pulse all-fiber amplification system based on large-mode-area fiber gratings. <i>Optics Letters</i> , 1999 , 24, 566-8	3	25
Modulator-free quadrature amplitude modulation signal synthesis. <i>Nature Communications</i> , 2014 , 5, 5911	17.4	24
	Polarization mode dispersion reduction in spun large mode area silica holey fibres. <i>Optics Express</i> , 2004 , 12, 1972-7 . <i>Journal of Lightwave Technology</i> , 2002 , 20, 36-46 All-fiber sliding-frequency Er (3+) / Yb (3+) soliton laser. <i>Optics Letters</i> , 1995 , 20, 2381 Photonic lantern broadband orbital angular momentum mode multiplexer. <i>Optics Express</i> , 2018 , 26, 30 Heterogeneous Space-Division Multiplexing and Joint Wavelength Switching Demonstration 2015 , How to make the propagation time through an optical fiber fully insensitive to temperature variations. <i>Optica</i> , 2017 , 4, 659 Polarization-Assisted Phase-Sensitive Processor. <i>Journal of Lightwave Technology</i> , 2015 , 33, 1166-1174 Highly Scalable Amplified Hybrid TDM/DWDM Array Architecture for Interferometric Fiber-Optic Sensor Systems. <i>Journal of Lightwave Technology</i> , 2013 , 31, 882-888 Science and technology challenges in XXIst century optical communications. <i>Comptes Rendus Physique</i> , 2011 , 12, 387-416 Optimizing the pumping configuration for the power scaling of in-band pumped erbium doped fiber amplifiers. <i>Optics Express</i> , 2012 , 20, 13886-95 Soliton Spectral Tunneling in Dispersion-Controlled Holey Fibers. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1414-1416 Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration. <i>Optics Express</i> , 2008 , 16, 2264-75 Ytterbium-doped large-core fibre laser with 272 W output power. <i>Electronics Letters</i> , 2003 , 39, 977 Broad-band second-harmonic generation in holey optical fibers. <i>IEEE Photonics Technology Letters</i> , 2001 , 13, 981-983 High-power chirped-pulse all-fiber amplification system based on large-mode-area fiber gratings. <i>Optics Letters</i> , 1999 , 24, 566-8	Polarization mode dispersion reduction in spun large mode area silica holey fibres. Optics Express, 2004, 12, 1972-7 Journal of Lightwave Technology, 2002, 20, 36-46 4 All-fiber sliding-frequency Er (3+) / Yb (3+) soliton laser. Optics Letters, 1995, 20, 2381 3 Photonic lantern broadband orbital angular momentum mode multiplexer. Optics Express, 2018, 26, 30042-30 Heterogeneous Space-Division Multiplexing and Joint Wavelength Switching Demonstration 2015, How to make the propagation time through an optical fiber fully insensitive to temperature variations. Optica, 2017, 4, 659 Polarization-Assisted Phase-Sensitive Processor. Journal of Lightwave Technology, 2015, 33, 1166-1174 Highly Scalable Amplified Hybrid TDM/DWDM Array Architecture for Interferometric Fiber-Optic Sensor Systems. Journal of Lightwave Technology, 2013, 31, 882-888 4 Science and technology challenges in XXIst century optical communications. Comptes Rendus Physique, 2011, 12, 387-416 Optimizing the pumping configuration for the power scaling of in-band pumped erbium doped fiber amplifiers. Optics Express, 2012, 20, 13886-95 Soliton Spectral Tunneling in Dispersion-Controlled Holey Fibers. IEEE Photonics Technology Letters, 2008, 20, 1414-1416 Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration. Optics Express, 2008, 16, 2264-75 Ytterbium-doped large-core fibre laser with 272 W output power. Electronics Letters, 2003, 39, 977 1.1 Broad-band second-harmonic generation in holey optical fibers. IEEE Photonics Technology Letters, 2001, 13, 981-983 High-power chirped-pulse all-fiber amplification system based on large-mode-area fiber gratings. Optics Letters, 1999, 24, 566-8

652	Reconfigurable multilevel phase-shift keying encoder-decoder for all-optical networks. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 431-433	2.2	24
651	Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser. <i>Optics Letters</i> , 2002 , 27, 1052-4	3	24
650	106 W, picosecond Yb-doped fiber MOPA system with a radially polarized output beam. <i>Optics Letters</i> , 2018 , 43, 4957-4960	3	24
649	Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at 1.55 microm. <i>Optics Express</i> , 2010 , 18, 15747-56	3.3	23
648	Power scaling in passively mode-locked large-mode area fiber lasers. <i>IEEE Photonics Technology Letters</i> , 1998 , 10, 1718-1720	2.2	23
647	The influence of chelating agents upon the dissimilatory reduction of Fe(III) by Shewanella putrefaciens. <i>BioMetals</i> , 1995 , 8, 163	3.4	23
646	Elliptical Core Few Mode Fibers for Multiple-Input Multiple Output-Free Space Division Multiplexing Transmission. <i>IEEE Photonics Technology Letters</i> , 2017 , 29, 1764-1767	2.2	22
645	All-Optical Programmable Disaggregated Data Centre Network Realized by FPGA-Based Switch and Interface Card. <i>Journal of Lightwave Technology</i> , 2016 , 34, 1925-1932	4	22
644	All-optical mode and wavelength converter based on parametric processes in a three-mode fiber. <i>Optics Express</i> , 2017 , 25, 33602	3.3	22
643	. Journal of Lightwave Technology, 2011 , 29, 22-30	4	22
642	Optical Fiber Fabrication Using Novel Gas-Phase Deposition Technique. <i>Journal of Lightwave Technology</i> , 2011 , 29, 912-915	4	22
641	High-power, variable repetition rate, picosecond optical parametric oscillator pumped by an amplified gain-switched diode. <i>Optics Express</i> , 2010 , 18, 7602-10	3.3	22
640	. IEEE Journal of Selected Topics in Quantum Electronics, 2009 , 15, 385-392	3.8	22
639	High fidelity femtosecond pulses from an ultrafast fiber laser system via adaptive amplitude and phase pre-shaping. <i>Optics Express</i> , 2008 , 16, 15074-89	3.3	22
638	Nanosecond dynamics of a gallium mirror light-induced reflectivity change. <i>Physical Review B</i> , 2001 , 63,	3.3	22
637	Fabrication of tubular anti-resonant hollow core fibers: modelling, draw dynamics and process optimization. <i>Optics Express</i> , 2019 , 27, 20567-20582	3.3	22
636	Reconfigurable structured light generation in a multicore fibre amplifier. <i>Nature Communications</i> , 2020 , 11, 3986	17.4	22
635	Compact Optical Comb Generator Using InP Tunable Laser and Push-Pull Modulator. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 217-220	2.2	21

(2004-2013)

634	Field demonstration of mode-division multiplexing upgrade scenarios on commercial networks. <i>Optics Express</i> , 2013 , 21, 31036-46	3.3	21
633	41.6 Tbit/s C-Band SDM OFDM Transmission Through 12 Spatial and Polarization Modes Over 74.17 km Few Mode Fiber. <i>Journal of Lightwave Technology</i> , 2015 , 33, 1440-1444	4	21
632	High-energy, in-band pumped erbium doped fiber amplifiers. <i>Optics Express</i> , 2012 , 20, 18803-18	3.3	21
631	Nonlinear tapered holey fibers with high stimulated Brillouin scattering threshold and controlled dispersion. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2007 , 24, 2185	1.7	21
630	2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber. <i>Optics Express</i> , 2006 , 14, 503	8- <u>4</u> 4	21
629	Demonstration of a 64-chip OCDMA system using superstructured fiber gratings and time-gating detection. <i>IEEE Photonics Technology Letters</i> , 2001 , 13, 1239-1241	2.2	21
628	Interband Short Reach Data Transmission in Ultrawide Bandwidth Hollow Core Fiber. <i>Journal of Lightwave Technology</i> , 2020 , 38, 159-165	4	21
627	Fiber-laser-pumped, high-energy, mid-IR, picosecond optical parametric oscillator with a high-harmonic cavity. <i>Optics Letters</i> , 2015 , 40, 3288-91	3	20
626	295-kW peak power picosecond pulses from a thulium-doped-fiber MOPA and the generation of watt-level >2.5-octave supercontinuum extending up to 5 fh. <i>Optics Express</i> , 2018 , 26, 6490-6498	3.3	20
625	Guided-wave second-harmonic generation in a LiNbO3 nonlinear photonic crystal. <i>Optics Letters</i> , 2006 , 31, 1232-4	3	20
624	WDM Transmission With In-Line Amplification at 1.3th Using a Bi-Doped Fiber Amplifier. <i>Journal of Lightwave Technology</i> , 2019 , 37, 1826-1830	4	19
623	High-energy, near- and mid-IR picosecond pulses generated by a fiber-MOPA-pumped optical parametric generator and amplifier. <i>Optics Express</i> , 2015 , 23, 12613-8	3.3	19
622	Compact, high-pulse-energy, high-power, picosecond master oscillator power amplifier. <i>Optics Express</i> , 2014 , 22, 21938-43	3.3	19
621	Efficient white light generation in secondary cores of holey fibers. <i>Optics Express</i> , 2007 , 15, 3729-36	3.3	19
620	. Journal of Lightwave Technology, 2007 , 25, 216-221	4	19
619	Microstructured fibers for sensing applications 2005 , 6005, 78		19
618	Characterization of the expression and activity of the periplasmic nitrate reductase of Paracoccus pantotrophus in chemostat cultures. <i>Microbiology (United Kingdom)</i> , 2003 , 149, 1533-1540	2.9	19
617	High gain efficiency amplifier based on an erbium doped aluminosilicate holey fiber. <i>Optics Express</i> , 2004 , 12, 3452-8	3.3	19

616	Demonstration of thermal poling in holey fibres. <i>Electronics Letters</i> , 2001 , 37, 107	1.1	19
615	Measurement of the energy dependence of the neutron loss per bounce function on reflection from oil and grease surfaces using monochromatic ultracold neutrons. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated</i>	1.2	19
614	40 dB gain all fiber bismuth-doped amplifier operating in the O-band. <i>Optics Letters</i> , 2019 , 44, 2248-23	253	19
613	40 Gb/s WDM Transmission Over 1.15-km HC-PBGF Using an InP-Based Mach-Zehnder Modulator at 2 fb. <i>Journal of Lightwave Technology</i> , 2016 , 34, 1706-1711	4	18
612	Point-by-point femtosecond laser micro-processing of independent core-specific fiber Bragg gratings in a multi-core fiber. <i>Optics Express</i> , 2018 , 26, 2039-2044	3.3	18
611	Impact of structural distortions on the performance of hollow-core photonic bandgap fibers. <i>Optics Express</i> , 2014 , 22, 2735-44	3.3	18
610	Intermodal Four-Wave Mixing and Parametric Amplification in Kilometer-Long Multimode Fibers. <i>Journal of Lightwave Technology</i> , 2017 , 35, 5296-5305	4	18
609	Optical Fourier synthesis of high-repetition-rate pulses. <i>Optica</i> , 2015 , 2, 18	8.6	18
608	Optical Phase Quantizer Based on Phase Sensitive Four Wave Mixing at Low Nonlinear Phase Shifts. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 2146-2149	2.2	18
607	X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms. <i>Optics Express</i> , 2014 , 22, 26181-92	3.3	18
606	High-power, high repetition-rate, green-pumped, picosecond LBO optical parametric oscillator. <i>Optics Express</i> , 2012 , 20, 7008-14	3.3	18
605	Diode-pumped, high-energy, single transverse mode Q-switch fibre laser. <i>Electronics Letters</i> , 1997 , 33, 1955	1.1	18
604	Investigation of Simultaneous 2R Regeneration of Two 40-Gb/s Channels in a Single Optical Fiber. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 270-272	2.2	18
603	High energy femtosecond fiber chirped pulse amplification system with adaptive phase control. <i>Optics Express</i> , 2008 , 16, 5813-21	3.3	18
602	Optical Propulsion of Individual and Clustered Microspheres along Sub-Micron Optical Wires. <i>Japanese Journal of Applied Physics</i> , 2008 , 47, 6716-6718	1.4	18
601	Optical injection locking-based amplification in phase-coherent transfer of optical frequencies. <i>Optics Letters</i> , 2015 , 40, 4198-201	3	17
600	All-optical mode-group multiplexed transmission over a graded-index ring-core fiber with single radial mode. <i>Optics Express</i> , 2017 , 25, 13773-13781	3.3	17
599	Nonlinear Generation of Ultra-Flat Broadened Spectrum Based on Adaptive Pulse Shaping. <i>Journal of Lightwave Technology</i> , 2012 , 30, 1971-1977	4	17

598	Erbium-doped multi-element fiber amplifiers for space-division multiplexing operations. <i>Optics Letters</i> , 2013 , 38, 582-4	3	17
597	1.06 \$mu\$ m Picosecond Pulsed, Normal Dispersion Pumping for Generating Efficient Broadband Infrared Supercontinuum in Meter-Length Single-Mode Tellurite Holey Fiber With High Raman Gain Coefficient. <i>Journal of Lightwave Technology</i> , 2011 , 29, 3461-3469	4	17
596	OTDM to WDM format conversion based on quadratic cascading in a periodically poled lithium niobate waveguide. <i>Optics Express</i> , 2010 , 18, 10282-8	3.3	17
595	First demonstration of multimode amplifier for spatial division multiplexed transmission systems 2011 ,		17
594	Investigation of Four-Wavelength Regenerator Using Polarization- and Direction-Multiplexing. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1676-1678	2.2	17
593	. Journal of Lightwave Technology, 2007 , 25, 394-401	4	17
592	Efficient low-threshold lasers based on an erbium-doped holey fiber. <i>IEEE Photonics Technology Letters</i> , 2005 , 17, 25-27	2.2	17
591	Optimisation of cascaded Yb fiber amplifier chains using numerical-modelling. <i>Optics Express</i> , 2006 , 14, 12846-58	3.3	17
590	Reduction of interchannel interference noise in a two-channel grating-based OCDMA system using a nonlinear optical loop mirror. <i>IEEE Photonics Technology Letters</i> , 2001 , 13, 529-531	2.2	17
589	Parametric oscillator directly pumped by a 1.55-mum erbium-fiber laser. <i>Optics Letters</i> , 1999 , 24, 975-7	3	17
588	Gridless Optical Networking Field Trial: Flexible Spectrum Switching, Defragmentation and Transport of 10G/40G/100G/555G over 620-km Field Fiber 2011 ,		17
587	Lotus-Shaped Negative Curvature Hollow Core Fiber With 10.5 dB/km at 1550 nm Wavelength. Journal of Lightwave Technology, 2018 , 36, 1213-1219	4	16
586	. Journal of Lightwave Technology, 2012 , 30, 512-520	4	16
585	Full quadrature regeneration of QPSK signals using sequential phase sensitive amplification and parametric saturation. <i>Optics Express</i> , 2017 , 25, 696-705	3.3	16
584	Designing Tapered Holey Fibers for Soliton Compression. <i>IEEE Journal of Quantum Electronics</i> , 2008 , 44, 192-198	2	16
583	Brillouin assisted slow-light enhancement via Fabry-Perot cavity effects. <i>Optics Express</i> , 2007 , 15, 5126-	·3 5 .3	16
582	Improving signal quality in a spectrum-sliced WDM system using SOA-based noise reduction. <i>IEEE Photonics Technology Letters</i> , 2005 , 17, 241-243	2.2	16
581	Passive, all-fibre source of 30 fs pulses. <i>Electronics Letters</i> , 1992 , 28, 778	1.1	16

580	. Journal of Lightwave Technology, 2019 , 37, 909-916	4	16
579	Ultra-Broadband Bismuth-Doped Fiber Amplifier Covering a 115-nm Bandwidth in the O and E Bands. <i>Journal of Lightwave Technology</i> , 2021 , 39, 795-800	4	16
578	Record Low-Loss 1.3dB/km Data Transmitting Antiresonant Hollow Core Fibre 2018 ,		16
577	Accurate modelling of fabricated hollow-core photonic bandgap fibers. <i>Optics Express</i> , 2015 , 23, 23117	-3523	15
576	Design of Four-Mode Erbium Doped Fiber Amplifier with Low Differential Modal Gain for Modal Division Multiplexed Transmissions 2013 ,		15
575	Wavelength Conversion in a Short Length of a Solid LeadBilicate Fiber. <i>IEEE Photonics Technology Letters</i> , 2010 , 22, 628-630	2.2	15
574	Efficient All-Optical Wavelength-Conversion Scheme Based on a Saw-Tooth Pulse Shaper. <i>IEEE Photonics Technology Letters</i> , 2009 , 21, 1837-1839	2.2	15
573	Hollow-core photonic bandgap fibers based on a square lattice cladding. <i>Optics Letters</i> , 2007 , 32, 2282-	43	15
572	All-optical modulation and demultiplexing systems with significant timing jitter tolerance through incorporation of pulse-shaping fiber Bragg gratings. <i>IEEE Photonics Technology Letters</i> , 2002 , 14, 203-20)5 ^{2.2}	15
57 ¹	Periodically amplified system based on loss compensating dispersion decreasing fibre. <i>Electronics Letters</i> , 1996 , 32, 373	1.1	15
57°	Experimental Demonstration of a Gridless Multi-granular Optical Network Supporting Flexible Spectrum Switching 2011 ,		15
569	All-optical Mode-Group Division Multiplexing Over a Graded-Index Ring-Core Fiber with Single Radial Mode 2016 ,		15
568	Multimodal spectral focusing CARS and SFG microscopy with a tailored coherent continuum from a microstructured fiber. <i>Applied Physics B: Lasers and Optics</i> , 2020 , 126, 1	1.9	14
567	Control of Material Transport Through Pulse Shape Manipulation Development Toward Designer Pulses. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2014 , 20, 51-63	3.8	14
566	High-energy diode-seeded nanosecond 2 Ith fiber MOPA systems incorporating active pulse shaping. <i>Optics Letters</i> , 2014 , 39, 1569-72	3	14
565	Optical racetrack ring-resonator based on two U-bent microfibers. <i>Applied Physics Letters</i> , 2011 , 98, 021	15029	14
564	Green-pumped, picosecond MgO:PPLN optical parametric oscillator. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2012 , 29, 144	1.7	14
563	Time domain add-drop multiplexing scheme enhanced using a saw-tooth pulse shaper. <i>Optics Express</i> , 2009 , 17, 8362-9	3.3	14

(2005-2008)

562	Four-Channel All-Fiber Dispersion-Managed 2R Regenerator. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1169-1171	2.2	14
561	Synchronously pumped optical parametric oscillator with a repetition rate of 81.8 GHz. <i>IEEE Photonics Technology Letters</i> , 2005 , 17, 483-485	2.2	14
560	Intensity noise suppression in fibre DFB laser using gain saturated SOA. <i>Electronics Letters</i> , 2004 , 40, 107	1.1	14
559	Rhodobacter capsulatus gains a competitive advantage from respiratory nitrate reduction during light-dark transitions. <i>Microbiology (United Kingdom)</i> , 2003 , 149, 941-948	2.9	14
558	Wavelength-tunable high-power picosecond pulses from a fiber-pumped diode-seeded high-gain parametric amplifier. <i>Optics Letters</i> , 1998 , 23, 1588-90	3	14
557	Ultrafast laser-scanning optical resolution photoacoustic microscopy at up to 2 million A-lines per second. <i>Journal of Biomedical Optics</i> , 2018 , 23, 1	3.5	14
556	Bandwidth enhancement of inter-modal four wave mixing Bragg scattering by means of dispersion engineering. <i>APL Photonics</i> , 2019 , 4, 022902	5.2	14
555	Efficient high-harmonic generation from a stable and compact ultrafast Yb-fiber laser producing 100 Tl, 350 fs pulses based on bendable photonic crystal fiber. <i>Applied Physics B: Lasers and Optics</i> , 2017 , 123, 43	1.9	13
554	High Spatial Density 6-Mode 7-Core Fiber Amplifier for L-Band Operation. <i>Journal of Lightwave Technology</i> , 2020 , 38, 2938-2943	4	13
553	Leakage channel fibers with microstuctured cladding elements: a unique LMA platform. <i>Optics Express</i> , 2014 , 22, 8574-84	3.3	13
552	Design of a Bragg fiber with large mode area for mid-infrared applications. <i>Optics Express</i> , 2011 , 19, 21	295;30)413
551	56-W Frequency-Doubled Source at 530 nm Pumped by a Single-Mode, Single-Polarization, Picosecond, Yb \$^{3+}\$-Doped Fiber MOPA. <i>IEEE Photonics Technology Letters</i> , 2010 , 22, 893-895	2.2	13
550	A silica based highly nonlinear fibre with improved threshold for stimulated brillouin scattering 2010 ,		13
549	. IEEE Photonics Technology Letters, 2011 , 23, 540-542	2.2	13
548	All-optical packet compression based on time-to-wavelength conversion. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 1688-1690	2.2	13
547	Fiber-DFB laser array pumped with a single 1-W CW Yb-fiber laser. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 655-657	2.2	13
546	. Journal of Lightwave Technology, 2003 , 21, 2518-2523	4	13
545	Comparison between nonlinear and linear spectrographic techniques for the complete characterization of high bit-rate pulses used in optical communications. <i>IEEE Photonics Technology Letters</i> , 2005 , 17, 1914-1916	2.2	13

544	The influence of chelating agents upon the dissimilatory reduction of Fe(III) byShewanella putrefaciens. Part 2. Oxo-and hydroxo-bridged polynuclear Fe(III) complexes. <i>BioMetals</i> , 1996 , 9, 291-30 ₹ · 4	13
543	Extruded tellurite antiresonant hollow core fiber for Mid-IR operation. <i>Optics Express</i> , 2020 , 28, 16542-16553	13
542	First Demonstration of Cladding Pumped Few-moded EDFA for Mode Division Multiplexed Transmission 2014 ,	13
541	Beam-Steering All-Optical Switch for Multi-Core Fibers 2017 ,	13
540	Modal content in hypocycloid Kagom[hollow core photonic crystal fibers. <i>Optics Express</i> , 2016 , 24, 15798 ₃ 8 ₃ 12	13
539	All-optical Phase Regeneration with Record PSA Extinction Ratio in a Low-birefringence Silicon Germanium Waveguide. <i>Journal of Lightwave Technology</i> , 2016 , 34, 3993-3998	13
538	Ultra-Compact Amorphous Silicon Waveguide for Wavelength Conversion. <i>IEEE Photonics Technology Letters</i> , 2016 , 28, 410-413	12
537	Phase Sensitivity Characterization in Fiber-Optic Sensor Systems Using Amplifiers and TDM. <i>Journal of Lightwave Technology</i> , 2013 , 31, 1645-1653	12
536	Low-loss all-fiber acousto-optic tunable filter. <i>Optics Letters</i> , 1997 , 22, 96-8	12
535	Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 1216-1218	12
534	OTDM add-drop multiplexer based on time-frequency signal processing. <i>Journal of Lightwave Technology</i> , 2006 , 24, 2720-2732	12
533	977-nm all-fiber DFB laser. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 2442-2444 2.2	12
532	Experimental investigation of picosecond pulse reflection from fiber gratings. <i>Optics Letters</i> , 1995 , 20, 282-4	12
531	Effects of gravity on the storage of ultracold neutrons. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 1994 , 337, 504-511 ^{1.2}	12
530	Ultra-short wavelength operation of thulium-doped fiber amplifiers and lasers. <i>Optics Express</i> , 2019 , 27, 36699-36707	12
529	Thulium-fiber-laser-pumped, high-peak-power, picosecond, mid-infrared orientation-patterned GaAs optical parametric generator and amplifier. <i>Optics Letters</i> , 2017 , 42, 4036-4039	11
528	Raman-shifted wavelength-selectable pulsed fiber laser with high repetition rate and high pulse energy in the visible. <i>Optics Express</i> , 2017 , 25, 351-356	11
527	Holmium-Doped Fiber Amplifier for Optical Communications at 2.05 ½.13 μm 2015 ,	11

526	Fast and broadband fiber dispersion measurement with dense wavelength sampling. <i>Optics Express</i> , 2014 , 22, 943-53	3.3	11
525	Real-time prediction of structural and optical properties of hollow-core photonic bandgap fibers during fabrication. <i>Optics Letters</i> , 2013 , 38, 1382-4	3	11
524	Gridless optical networking field trial: flexible spectrum switching, defragmentation and transport of 10G/40G/100G/555G over 620-km field fiber. <i>Optics Express</i> , 2011 , 19, B277-82	3.3	11
523	Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA. <i>Laser Physics Letters</i> , 2011 , 8, 747-753	1.5	11
522	Wide Bandwidth Experimental Study of Nondegenerate Phase-Sensitive Amplifiers in Single- and Dual-Pump Configurations. <i>IEEE Photonics Technology Letters</i> , 2010 , 22, 1781-1783	2.2	11
521	Field Experiments With a Grooming Switch for OTDM Meshed Networking. <i>Journal of Lightwave Technology</i> , 2010 , 28, 316-327	4	11
520	First Demonstration of 2μm Data Transmission in a Low-Loss Hollow Core Photonic Bandgap Fiber 2012 ,		11
519	Efficient Wavelength Conversion Using Triangular Pulses Generated Using a SuperStructured Fiber Bragg Grating 2008 ,		11
518	Fiber Design For High-Power Low-Cost Yb:Al-Doped Fiber Laser Operating at 980 nm. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2007 , 13, 588-597	3.8	11
517	Brillouin characterization of holey optical fibers. <i>Optics Letters</i> , 2006 , 31, 2541-3	3	11
-16			
516	Wavelength and duration-tunable 10-GHz 1.3-ps pulse source using dispersion decreasing fiber-based distributed Raman amplification. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 1167-1169	2.2	11
515		2.2	11
	fiber-based distributed Raman amplification. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 1167-1169	3.3	
515	fiber-based distributed Raman amplification. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 1167-1169 321 W average power, 1 GHz, 20 ps, 1060 nm pulsed fiber MOPA source 2005 ,		11
515 514	fiber-based distributed Raman amplification. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 1167-1169 321 W average power, 1 GHz, 20 ps, 1060 nm pulsed fiber MOPA source 2005 , Light-induced metallization at the gallium-silica interface. <i>Physical Review B</i> , 2001 , 64, Assignment of haem ligands and detection of electronic absorption bands of molybdenum in the	3.3	11
515 514 513	fiber-based distributed Raman amplification. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 1167-1169 321 W average power, 1 GHz, 20 ps, 1060 nm pulsed fiber MOPA source 2005 , Light-induced metallization at the gallium-silica interface. <i>Physical Review B</i> , 2001 , 64, Assignment of haem ligands and detection of electronic absorption bands of molybdenum in the di-haem periplasmic nitrate reductase of Paracoccus pantotrophus. <i>FEBS Letters</i> , 2001 , 500, 71-4 QPSK Phase and Amplitude Regeneration at 56 Gbaud in a Novel Idler-Free Non-Degenerate Phase	3.3	11 11
515 514 513 512	fiber-based distributed Raman amplification. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 1167-1169 321 W average power, 1 GHz, 20 ps, 1060 nm pulsed fiber MOPA source 2005 , Light-induced metallization at the gallium-silica interface. <i>Physical Review B</i> , 2001 , 64, Assignment of haem ligands and detection of electronic absorption bands of molybdenum in the di-haem periplasmic nitrate reductase of Paracoccus pantotrophus. <i>FEBS Letters</i> , 2001 , 500, 71-4 QPSK Phase and Amplitude Regeneration at 56 Gbaud in a Novel Idler-Free Non-Degenerate Phase Sensitive Amplifier 2011 ,	3.3	11 11 11

508	Multi-Band Direct-Detection Transmission Over an Ultrawide Bandwidth Hollow-Core NANF. <i>Journal of Lightwave Technology</i> , 2020 , 38, 2849-2857	4	10
507	Multi-Channel Phase Regenerator Based on Polarization-Assisted Phase-Sensitive Amplification. <i>IEEE Photonics Technology Letters</i> , 2016 , 28, 845-848	2.2	10
506	Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers. <i>Optics Express</i> , 2018 , 26, 8866-8882	3.3	10
505	Picosecond all-optical switching and dark pulse generation in a fibre-optic network using a plasmonic metamaterial absorber. <i>Applied Physics Letters</i> , 2018 , 113, 051103	3.4	10
504	72-Tb/s transmission over 179-km all-fiber 6-mode span with two cladding pumped in-line amplifiers 2015 ,		10
503	Experimental Characterization of a Graded-Index Ring-Core Fiber Supporting 7 LP Mode Groups 2015 ,		10
502	Yb-fiber amplifier pumped idler-resonant PPLN optical parametric oscillator producing 90 femtosecond pulses with high beam quality. <i>Applied Physics B: Lasers and Optics</i> , 2014 , 117, 987-993	1.9	10
501	Broadband, Flat Frequency Comb Generated Using Pulse Shaping-Assisted Nonlinear Spectral Broadening. <i>IEEE Photonics Technology Letters</i> , 2013 , 25, 543-545	2.2	10
500	The Multipeak Phenomena and Nonlinear Effects in \${Q}\$-Switched Fiber Lasers. <i>IEEE Photonics Technology Letters</i> , 2011 , 23, 1763-1765	2.2	10
499	Excitation of individual Raman Stokes lines in the visible regime using rectangular-shaped nanosecond optical pulses at 530 nm. <i>Optics Letters</i> , 2010 , 35, 2433-5	3	10
498	Processing of optical combs with fiber optic parametric amplifiers. <i>Optics Express</i> , 2012 , 20, 10059-70	3.3	10
497	. Journal of Lightwave Technology, 2009 , 27, 1135-1141	4	10
496	Full Characterization of Low-Power Picosecond Pulses From a Gain-Switched Diode Laser Using Electrooptic Modulation-Based Linear FROG. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 505-507	2.2	10
495	Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 fb - 5 fb 2006 ,		10
494	40 GHz adiabatic compression of a modulator based dual frequency beat signal using Raman amplification in dispersion decreasing fiber. <i>Optics Express</i> , 2004 , 12, 2187-92	3.3	10
493	Cross-phase modulation effects in nonlinear fiber Bragg gratings. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2000 , 17, 345	1.7	10
492	Spectral features associated with nonlinear pulse compression in Bragg gratings. <i>Optics Letters</i> , 2000 , 25, 740-2	3	10
491	Cross-wavelength all-optical switching using nonlinearity of liquefying gallium. <i>Optics Express</i> , 1999 , 5, 157-62	3.3	10

490	. IEEE Photonics Technology Letters, 1994 , 6, 1380-1382	2.2	10
489	High-average-power picosecond mid-infrared OP-GaAs OPO. <i>Optics Express</i> , 2020 , 28, 5741-5748	3.3	10
488	Experimental Demonstration of Dual O+C-Band WDM Transmission Over 50-km SSMF With Direct Detection. <i>Journal of Lightwave Technology</i> , 2020 , 38, 2278-2284	4	10
487	Broadband silica-based thulium doped fiber amplifier employing multi-wavelength pumping. <i>Optics Express</i> , 2016 , 24, 23001-23008	3.3	10
486	Transmission of 61 C-Band Channels Over Record Distance of Hollow-Core-Fiber With L-Band Interferers. <i>Journal of Lightwave Technology</i> , 2021 , 39, 813-820	4	10
485	Optimisation of amplitude limiters for phase preservation based on the exact solution to degenerate four-wave mixing. <i>Optics Express</i> , 2016 , 24, 2774-87	3.3	9
484	Optical chopper-based re-circulating loop for few-mode fiber transmission. <i>Optics Letters</i> , 2014 , 39, 118	813-4	9
483	Wavelength conversion of complex modulation formats in a compact SiGe waveguide. <i>Optics Express</i> , 2017 , 25, 3252-3258	3.3	9
482	Few-mode multi-element fiber amplifier for mode division multiplexing. <i>Optics Express</i> , 2014 , 22, 2903	1- 6 .3	9
481	Gain equalization of a six-mode-group ring core multimode EDFA 2014 ,		9
481 480	Gain equalization of a six-mode-group ring core multimode EDFA 2014 , Brillouin Suppressed Highly Nonlinear Fibers 2012 ,		9
		1	
480	Brillouin Suppressed Highly Nonlinear Fibers 2012 , Gamma irradiation of minimal latency Hollow-Core Photonic Bandgap Fibres. <i>Journal of</i>	1 3-3	9
480 479	Brillouin Suppressed Highly Nonlinear Fibers 2012, Gamma irradiation of minimal latency Hollow-Core Photonic Bandgap Fibres. <i>Journal of Instrumentation</i> , 2013, 8, C12010-C12010 Optical grooming switch with regenerative functionality for transparent interconnection of		9
480 479 478	Brillouin Suppressed Highly Nonlinear Fibers 2012, Gamma irradiation of minimal latency Hollow-Core Photonic Bandgap Fibres. <i>Journal of Instrumentation</i> , 2013, 8, C12010-C12010 Optical grooming switch with regenerative functionality for transparent interconnection of networks. <i>Optics Express</i> , 2009, 17, 15173-85 Comparative study of the effective single mode operational bandwidth in sub-wavelength optical	3.3	9 9
480 479 478 477	Brillouin Suppressed Highly Nonlinear Fibers 2012, Gamma irradiation of minimal latency Hollow-Core Photonic Bandgap Fibres. <i>Journal of Instrumentation</i> , 2013, 8, C12010-C12010 Optical grooming switch with regenerative functionality for transparent interconnection of networks. <i>Optics Express</i> , 2009, 17, 15173-85 Comparative study of the effective single mode operational bandwidth in sub-wavelength optical wires and conventional single-mode fibers. <i>Optics Express</i> , 2009, 17, 16619-24 Dispersion Management in Highly Nonlinear, Carbon Disulfide Filled Holey Fibers. <i>IEEE Photonics</i>	3.3	9 9 9
480 479 478 477 476	Brillouin Suppressed Highly Nonlinear Fibers 2012, Gamma irradiation of minimal latency Hollow-Core Photonic Bandgap Fibres. Journal of Instrumentation, 2013, 8, C12010-C12010 Optical grooming switch with regenerative functionality for transparent interconnection of networks. Optics Express, 2009, 17, 15173-85 Comparative study of the effective single mode operational bandwidth in sub-wavelength optical wires and conventional single-mode fibers. Optics Express, 2009, 17, 16619-24 Dispersion Management in Highly Nonlinear, Carbon Disulfide Filled Holey Fibers. IEEE Photonics Technology Letters, 2008, 20, 1449-1451 Direct characterization of the spatial effective refractive index profile in Bragg gratings. IEEE	3-3	9 9 9 9 9

472	Chaperones involved in assembly and export of N-oxide reductases. <i>Biochemical Society Transactions</i> , 2005 , 33, 124-6	5.1	9
471	High nonlinearity extruded single-mode holey optical fibers 2002,		9
470	Keyed axis single-polarisation all-fibre DFB laser. <i>Electronics Letters</i> , 2002 , 38, 1537	1.1	9
469	Passive Q-switching of an Er3+:Yb3+ fibre laser with a fibrised liquefying gallium mirror. <i>Optics Communications</i> , 1999 , 166, 239-243	2	9
468	Investigation of fiber grating-based performance limits in pulse stretching and recompression schemes using bidirectional reflection from a linearly chirped fiber grating. <i>IEEE Photonics Technology Letters</i> , 1995 , 7, 1436-1438	2.2	9
467	All-optical phase regeneration of 40Gbit/s DPSK signals in a black-box phase sensitive amplifier 2010 ,		9
466	Temperature insensitive fiber interferometry. <i>Optics Letters</i> , 2019 , 44, 2768	3	9
465	Highly efficient ITm3+ doped germanate large mode area single mode fiber laser. <i>Optical Materials Express</i> , 2019 , 9, 4115	2.6	9
464	Low loss and high performance interconnection between standard single-mode fiber and antiresonant hollow-core fiber. <i>Scientific Reports</i> , 2021 , 11, 8799	4.9	9
463	Accurate calibration of S(2) and interferometry based multimode fiber characterization techniques. <i>Optics Express</i> , 2015 , 23, 10540-52	3.3	8
462	Experimental Demonstration of Improved Equalization Algorithm for IM/DD Fast OFDM. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 1780-1783	2.2	8
461	Long-Length and Thermally Stable High-Finesse Fabry-Perot Interferometers Made of Hollow Core Optical Fiber. <i>Journal of Lightwave Technology</i> , 2020 , 38, 2423-2427	4	8
460	Demonstration of Single-Mode Multicore Fiber Transport Network With Crosstalk-Aware In-Service Optical Path Control. <i>Journal of Lightwave Technology</i> , 2018 , 36, 1451-1457	4	8
459	Fibre-optic based particle sensing via deep learning. <i>JPhys Photonics</i> , 2019 , 1, 044004	2.5	8
458	100-GHz Grid-Aligned Multi-Channel Polarization Insensitive Black-Box Wavelength Converter. Journal of Lightwave Technology, 2014 , 32, 3027-3035	4	8
457	EVROS: All-optical programmable disaggregated data centre interconnect utilizing hollow-core bandgap fibre 2015 ,		8
456	81 Gb/s WDM transmission at 2th over 1.15 km of low-loss hollow core photonic bandgap fiber 2014 ,		8
455	Understanding Wavelength Scaling in 19-Cell Core Hollow-Core Photonic Bandgap Fibers 2014 ,		8

454	Single polarization picosecond fiber MOPA power scaled to beyond 500 W. <i>Laser Physics Letters</i> , 2014 , 11, 085103	1.5	8
453	Vector Mode effects in Few Moded Erbium Doped Fiber Amplifiers 2013,		8
452	Phase regeneration of DPSK signals in a highly nonlinear lead-silicate W-type fiber. <i>Optics Express</i> , 2012 , 20, 27419-24	3.3	8
451	Phase sensitive amplification in a highly nonlinear lead-silicate fiber. <i>Optics Express</i> , 2012 , 20, 1629-34	3.3	8
450	Bacterial Cadmium Sulfide Semiconductor Particles: An Assessment of their Photoactivity by EPR Spectroscopy. <i>Photochemistry and Photobiology</i> , 1997 , 65, 811-817	3.6	8
449	Timing Jitter Tolerant All-Optical TDM Demultiplexing Using a Saw-Tooth Pulse Shaper. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1992-1994	2.2	8
448	. Journal of Lightwave Technology, 2008 , 26, 3110-3117	4	8
447	Detailed Comparison of Injection-Seeded and Self-Seeded Performance of a 1060-nm Gain-Switched Fabry Phot Laser Diode. <i>IEEE Journal of Quantum Electronics</i> , 2008 , 44, 645-651	2	8
446	Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m Bismuth-oxide fiber 2006 ,		8
445	. IEEE Journal of Selected Topics in Quantum Electronics, 2007 , 13, 1480-1486	3.8	8
444	Optical parametric oscillator with a pulse repetition rate of 39 GHz and 2.1-W signal average output power in the spectral region near 1.5 microm. <i>Optics Letters</i> , 2005 , 30, 290-2	3	8
443	Microstructured fibers for broadband wavefront filtering in the mid-IR. <i>Optics Express</i> , 2006 , 14, 11773-	-85 3	8
442	1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system 2006 , 6102, 348		8
441	Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber 2003 ,		8
440	Compact, high repetition rate, 4.2 MW peak power, 1925 nm, thulium-doped fiber chirped-pulse amplification system with dissipative soliton seed laser. <i>Optics Express</i> , 2019 , 27, 36741-36749	3.3	8
439	Antiresonant Hollow Core Fiber with Octave Spanning Bandwidth for Short Haul Data Communications 2016 ,		8
438	Ultra-low NA step-index large mode area Yb-doped fiber with a germanium doped cladding for high power pulse amplification. <i>Optics Letters</i> , 2020 , 45, 3828-3831	3	8
437	Optoelectronic oscillator incorporating hollow-core photonic bandgap fiber. <i>Optics Letters</i> , 2017 , 42, 2647-2650	3	8

436	The generation of femtosecond optical vortex beams with megawatt powers directly from a fiber based Mamyshev oscillator. <i>Nanophotonics</i> , 2021 ,	6.3	8
435	Fully integrated optical isolators for space division multiplexed (SDM) transmission. <i>APL Photonics</i> , 2019 , 4, 022801	5.2	8
434	Backscattering in antiresonant hollow-core fibers: over 40 dB lower than in standard optical fibers. <i>Optica</i> , 2021 , 8, 216	8.6	8
433	Extreme Short Wavelength Operation (1.65 \square .7 μ m) of Silica-Based Thulium-Doped Fiber Amplifier 2015 ,		7
432	Polarization Insensitive Wavelength Conversion in a Low-Birefringence SiGe Waveguide. <i>IEEE Photonics Technology Letters</i> , 2016 , 28, 1221-1224	2.2	7
431	First demonstration of all-optical programmable SDM/TDM intra data centre and WDM inter-DCN communication 2014 ,		7
430	Optical side scattering radiometry for high resolution, wide dynamic range longitudinal assessment of optical fibers. <i>Optics Express</i> , 2015 , 23, 27960-74	3.3	7
429	Demonstration of an 11km Hollow Core Photonic Bandgap Fiber for Broadband Low-latency Data Transmission 2015 ,		7
428	Demonstration of a 9 LP-Mode Transmission Fiber with Low DMD and Loss 2015 ,		7
427	41.6 Tb/s C-band SDM OFDM transmission through 12 spatial and polarization modes over 74.17 km few mode fiber 2014 ,		7
426	Selective amplification of frequency comb modes via optical injection locking of a semiconductor laser: influence of adjacent unlocked comb modes 2013 ,		7
425	Retiming of Short Pulses Using Quadratic Cascading in a Periodically Poled Lithium Niobate Waveguide. <i>IEEE Photonics Technology Letters</i> , 2011 , 23, 94-96	2.2	7
424	Feed-forward true carrier extraction of high baud rate phase shift keyed signals using photonic modulation stripping and low-bandwidth electronics. <i>Optics Express</i> , 2011 , 19, 26594-9	3.3	7
423	Embedded Optical Microfiber Coil Resonator With Enhanced High-\$Q\$. <i>IEEE Photonics Technology Letters</i> , 2010 ,	2.2	7
422	Silica-based highly nonlinear fibers with a high SBS threshold 2011 ,		7
421	The effect of periodicity on the defect modes of large mode area microstructured fibers. <i>Optics Express</i> , 2008 , 16, 18631-45	3.3	7
420	Generalisation and Experimental Validation of Design Rules for Self-Phase Modulation-based 2R-Regenerators 2007 ,		7
419	Demonstration of a simple CDMA transmitter and receiver using sampled fibre gratings		7

418	All-optical modulation of 40 GHz beat frequency conversion soliton source. <i>Electronics Letters</i> , 1995 , 31, 1362-1364	1.1	7
417	Demonstration of 205 km transmission of 35 GHz, 5 ps pulses generated from a diode-driven, low-jitter, beat-signal to soliton train conversion source. <i>Electronics Letters</i> , 1995 , 31, 470-472	1.1	7
416	First Demonstration of a Broadband 37-cell Hollow Core Photonic Bandgap Fiber and Its Application to High Capacity Mode Division Multiplexing 2013 ,		7
415	Ultrawide Bandwidth Hollow Core Fiber for Interband Short Reach Data Transmission 2019,		7
414	Intermodal frequency generation in silicon-rich silicon nitride waveguides. <i>Photonics Research</i> , 2019 , 7, 615	6	7
413	InP-based Optical Comb-locked Tunable Transmitter 2016 ,		7
412	Hollow-core fibres for temperature-insensitive fibre optics and its demonstration in an Optoelectronic oscillator. <i>Scientific Reports</i> , 2018 , 8, 18015	4.9	7
411	Amplified O-Band WDM Transmission Using a Bi-Doped Fibre Amplifier 2018 ,		7
410	A Tuneable Multi-Core to Single Mode Fiber Coupler. <i>IEEE Photonics Technology Letters</i> , 2017 , 29, 591-5	942	6
409	Cryptography in coherent optical information networks using dissipative metamaterial gates. <i>APL Photonics</i> , 2019 , 4, 046102	5.2	6
408	15 \$times\$ 200 Gbit/s 16-QAM SDM Transmission Over an Integrated 7-Core Cladding-Pumped Repeatered Multicore Link in a Recirculating Loop. <i>Journal of Lightwave Technology</i> , 2018 , 36, 349-354	4	6
407	Current status of few mode fiber amplifiers for spatial division multiplexed transmission. <i>Journal of Optics (India)</i> , 2016 , 45, 275-284	1.3	6
406	Optical Injection-Locked Directly Modulated Lasers for Dispersion Pre-Compensated Direct-Detection Transmission. <i>Journal of Lightwave Technology</i> , 2018 , 36, 4967-4974	4	6
405	100-Gb/s Transmission Over a 2520-km Integrated MCF System Using Cladding-Pumped Amplifiers. <i>IEEE Photonics Technology Letters</i> , 2017 , 29, 1187-1190	2.2	6
404	Parametric modeling using sensitivity-based adjoint neuro-transfer functions for microwave passive components 2015 ,		6
403	Nonlinearity mitigation through optical phase conjugation in a deployed fibre link with full bandwidth utilization 2015 ,		6
402	90 nm gain extension towards 1.7 fb for diode-pumped silica-based thulium-doped fiber amplifiers 2014 ,		6
401	First demonstration of a 2th few-mode TDFA for mode division multiplexing. <i>Optics Express</i> , 2014 , 22, 10544-9	3.3	6

400	Picometer-scale surface roughness measurements inside hollow glass fibres. <i>Optics Express</i> , 2014 , 22, 29554-67	3.3	6
399	Suppression of Gain Variation in a PSA-Based Phase Regenerator Using an Additional Harmonic. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 2074-2077	2.2	6
398	1 Km hole-assisted few-mode multi-core fiber 32QAM WDM transmission 2014 ,		6
397	Full characterization and comparison of phase properties of narrow linewidth lasers operating in the C-band 2011 ,		6
396	Selective excitation of multiple Raman Stokes wavelengths (green-yellow-red) using shaped multi-step pulses from an all-fiber PM MOPA. <i>Optics Express</i> , 2011 , 19, 2085-92	3.3	6
395	Phase-regenerative wavelength conversion in periodically poled lithium niobate waveguides. <i>Optics Express</i> , 2011 , 19, 11705-15	3.3	6
394	Analysis of modal interference in Photonic Bandgap Fibres 2010 ,		6
393	Modulation format conversion employing coherent optical superposition. <i>Optics Express</i> , 2012 , 20, B327	2 ₃ 39	6
392	All-fiber acoustooptic filter with low-polarization sensitivity and no frequency shift. <i>IEEE Photonics Technology Letters</i> , 1997 , 9, 461-463	2.2	6
391	Performance comparison of spectrum-slicing techniques employing SOA-based noise suppression at the transmitter or receiver. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 1494-1496	2.2	6
390	Seeded erbium Itterbium codoped fibre amplifier source with 87 W of single-frequency output power. <i>Electronics Letters</i> , 2003 , 39, 1717	1.1	6
389	Generation of ultra-flat SPM-broadened spectra in a highly nonlinear fiber using pulse pre-shaping in a fiber Bragg grating 2005 ,		6
388	Transmission of 6 ps linear pulses over 50 km of standard fiber using midpoint spectral inversion to eliminate dispersion. <i>IEEE Journal of Quantum Electronics</i> , 1994 , 30, 2114-2119	2	6
387	Optimising the Performances of Hollow Antiresonant Fibres 2011 ,		6
386	Adiabatic higher-order mode microfibers based on a logarithmic index profile. <i>Optics Express</i> , 2020 , 28, 19126-19132	3.3	6
385	Compact few-mode fiber collimator and associated optical components for mode division multiplexed transmission 2016 ,		6
384	Hollow Core Fibres and their Applications 2017,		6
383	Novel Antiresonant Hollow Core Fiber Design with Ultralow Leakage Loss Using Transverse Power Flow Analysis 2019 ,		6

(2013-2019)

382	Demonstration of opposing thermal sensitivities in hollow-core fibers with open and sealed ends. <i>Optics Letters</i> , 2019 , 44, 4367-4370	3	6
381	All-optical 160 Gbit/s RZ data retiming system incorporating a pulse shaping fibre Bragg grating 2007 ,		6
380	On-Demand Spectrum and Space Defragmentation in an Elastic SDM/FDM/TDM Network with Mixed Multi- and Single-core Fiber Links 2013 ,		6
379	. Journal of Lightwave Technology, 2016 , 34, 3223-3229	4	6
378	Optical Predistortion Enabling Phase Preservation in Optical Signal Processing Demonstrated in FWM-Based Amplitude Limiter. <i>Journal of Lightwave Technology</i> , 2017 , 35, 963-970	4	5
377	Intermodal Bragg-Scattering Four Wave Mixing in Silicon Waveguides. <i>Journal of Lightwave Technology</i> , 2019 , 37, 1680-1685	4	5
376	Low Thermal Sensitivity Hollow Core Fiber for Optically-Switched Data Centers. <i>Journal of Lightwave Technology</i> , 2020 , 38, 2703-2709	4	5
375	Cavity-induced phase noise suppression in a Fabry-Perot modulator-based optical frequency comb. <i>Optics Letters</i> , 2017 , 42, 1536-1539	3	5
374	Widely Tunable, Narrow-Linewidth, High-Peak-Power, Picosecond Midinfrared Optical Parametric Amplifier. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2018 , 24, 1-6	3.8	5
373	Ten gigabit per second optical transmissions at 1.98 μm in centimetre-long SiGe waveguides. <i>Electronics Letters</i> , 2017 , 53, 1213-1214	1.1	5
372	Anisotropic Superattenuation of Capillary Waves on Driven Glass Interfaces. <i>Physical Review Letters</i> , 2017 , 119, 235501	7.4	5
371	Radially and azimuthally polarized nanosecond Yb-doped fiber MOPA system incorporating temporal shaping. <i>Optics Letters</i> , 2017 , 42, 1740-1743	3	5
370	Data transmission through up to 74.8 km of hollow-core fiber with coherent and direct-detect transceivers 2015 ,		5
369	Efficient binary phase quantizer based on phase sensitive four wave mixing 2014,		5
368	Spatial mode switchable, wavelength tunable erbium doped fiber laser incorporating a spatial light modulator 2014 ,		5
367	An Optical Phase Quantiser Exhibiting Suppressed Phase Dependent Gain Variation 2014,		5
366	All-Optical Processing of Multi-level Phase Shift Keyed Signals 2012 ,		5
365	Overcoming the Challenges of Splicing Dissimilar Diameter Solid-Core and Hollow-Core Photonic Band Gap Fibers 2013 ,		5

364	Tunable synchronously-pumped fiber Raman laser in the visible and near-infrared exploiting MOPA-generated rectangular pump pulses. <i>Optics Letters</i> , 2011 , 36, 2050-2	3	5
363	Adaptive extraction of emotion-related EEG segments using multidimensional directed information in time-frequency domain. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> ,	0.9	5
362	Fiber MOPA based tunable source for terahertz spectroscopy. <i>Laser Physics Letters</i> , 2012 , 9, 350-354	1.5	5
361	Distributed dispersion measurements and control within continuously varying dispersion tapered fibers. <i>IEEE Photonics Technology Letters</i> , 1997 , 9, 1511-1513	2.2	5
360	Demonstration of a full-duplex bidirectional spectrally interleaved OCDMA/DWDM system. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 482-484	2.2	5
359	7.7 mJ pulses from a large core Yb-doped cladding pumped Q-switched fibre laser 2001 ,		5
358	Continuous-wave pumped holey fiber Raman laser 2002,		5
357	Demonstrations of Berry's phase using polarised neutrons. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1989 , 284, 192-196	1.2	5
356	Compact micro-optic based components for hollow core fibers. Optics Express, 2020, 28, 1518-1525	3.3	5
355	Controllable duration and repetition-rate picosecond pulses from a high-average-power OP-GaAs OPO. <i>Optics Express</i> , 2020 , 28, 32540-32548	3.3	5
354	Homodyne OFDM using Simple Optical Carrier Recovery 2014 ,		5
353	Silica-Based Thulium Doped Fiber Amplifiers for Wavelengths beyond the L-band 2016 ,		5
352	300-km Transmission of Dispersion Pre-compensated PAM4 Using Direct Modulation and Direct Detection 2017 ,		5
351	Annular Core Photonic Lantern OAM Mode Multiplexer 2017 ,		5
350	Nondestructive measurement of the roughness of the inner surface of hollow core-photonic bandgap fibers. <i>Optics Letters</i> , 2016 , 41, 5086-5089	3	5
349	High-beam-quality, watt-level, widely tunable, mid-infrared OP-GaAs optical parametric oscillator. <i>Optics Letters</i> , 2019 , 44, 2744	3	5
348	Study on the temperature dependent characteristics of O-band bismuth-doped fiber amplifier. <i>Optics Letters</i> , 2019 , 44, 5650-5653	3	5
347	PAM4 transmission over 360 km of fibre using optical phase conjugation. <i>OSA Continuum</i> , 2019 , 2, 973	1.4	5

346	Simplified Impulse Response Characterization for Mode Division Multiplexed Systems 2016,		5
345	Low Computational Complexity Mode Division Multiplexed OFDM Transmission over 130 km of Few Mode Fiber 2013 ,		5
344	Multicore and multimode optical amplifiers for space division multiplexing 2020, 301-333		5
343	The Thermal Phase Sensitivity of Both Coated and Uncoated Standard and Hollow Core Fibers Down to Cryogenic Temperatures. <i>Journal of Lightwave Technology</i> , 2020 , 38, 2477-2484	4	5
342	Laser frequency stabilization and spectroscopy at 2051 nm using a compact CO-filled Kagome hollow core fiber gas-cell system. <i>Optics Express</i> , 2018 , 26, 28621-28633	3.3	5
341	Demonstration of Space-to-Wavelength Conversion in SDM Networks. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 828-831	2.2	4
340	Record Phase Sensitive Extinction Ratio in a Silicon Germanium Waveguide 2015,		4
339	Practical Considerations on Discrete Multi-tone Transmission for Cost-effective Access Networks 2015 ,		4
338	Phase regeneration of an M-PSK signal using partial regeneration of its M/2-PSK second phase harmonic. <i>Optics Communications</i> , 2015 , 334, 35-40	2	4
337	C- to L- band Wavelength Conversion Enabled by Parametric Processes in a Few Mode Fiber 2017 ,		4
336	Novel Fiber Design for Wideband Conversion and Amplification in Multimode Fibers 2017,		4
335	Multicore Fibre Fan-In/Fan-Out Device using Fibre Optic Collimators 2017 ,		4
334	FWM-based, Idler-free Phase Quantiser with Flexible Operating Power 2015 ,		4
333	Studying the limits of production rate and yield for the volume manufacturing of hollow core photonic band gap fibers. <i>Optics Express</i> , 2015 , 23, 32179-90	3.3	4
332	PSA-based all-optical multi-channel phase regenerator 2015 ,		4
331	Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission 2012 ,		4
330	WDM Transmission at 2th over Low-Loss Hollow Core Photonic Bandgap Fiber 2013,		4
329	First Demonstration of an Amplified Transmission Line Based on Multi-Element Fibre Technology 2013 ,		4

328	500km remote interrogation of optical sensor arrays 2011 ,		4
327	All-optical phase-regenerative multicasting of 40 Gbit/s DPSK signal in a degenerate phase sensitive amplifier 2010 ,		4
326	Wide spectral range confocal microscope based on endlessly single-mode fiber. <i>Optics Express</i> , 2010 , 18, 18811-9	3.3	4
325	In situ spatially-resolved thermal and Brillouin diagnosis of high-power ytterbium-doped fibre laser by Brillouin optical time domain analysis. <i>Electronics Letters</i> , 2009 , 45, 153	1.1	4
324	Optical interconnection of core and metro networks [Invited]. <i>Journal of Optical Networking</i> , 2008 , 7, 928		4
323	Characterization of XGM and XPM in a SOA-MZI using a Linear Frequency Resolved Gating Technique. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007,		4
322	Temporal-Talbot Effect Based All-Optical Clock Recovery Using Bragg gratings 2007,		4
321	Frequency-resolved optical gating in the 155 µm band via cascaded chi^(2) processes. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2005 , 22, 1985	1.7	4
320	Second-harmonic generation in hexagonally-poled lithium niobate slab waveguides. <i>Electronics Letters</i> , 2003 , 39, 75	1.1	4
319	Fabrication and optical properties of lead silicate glass holey fibers. <i>Journal of Non-Crystalline Solids</i> , 2004 , 345-346, 293-296	3.9	4
318	Fundamentals and applications of silica and nonsilica holey fibers 2004 , 5350, 35		4
317	Generation, recognition and recoding of 64-chip bipolar optical code sequences using superstructured fibre Bragg gratings. <i>Electronics Letters</i> , 2001 , 37, 190	1.1	4
316	Holey fibers: new possibilities for guiding and manipulating light 2002,		4
315	A 16-channel OCDMA system (4 OCDM /spl times/ 4 WDM) based on 16-chip, 20 Gchip/s superstructure fibre Bragg gratings and DFB fibre laser transmitters		4
314	Light-induced specular-reflectivity suppression at a gallium/silica interface. <i>Optics Letters</i> , 2000 , 25, 159	34 ,-6	4
313	Efficient modelling of holey fibers 1999 ,		4
312	Soliton Effects in an AlGaAs Bragg Grating. Optics and Photonics News, 1999, 10, 43	1.9	4
311	Nd:YAG laser pumped picosecond Yb3+/Er3+ fibre laser. <i>Electronics Letters</i> , 1992 , 28, 766	1.1	4

310	Cavity ring-down in a photonic bandgap fiber gas cell 2008,		4
309	Multi-Watt All-Fiber Frequency Doubled Laser 2014 ,		4
308	Complementary Analysis of Modal Content and Properties in a 19-cell Hollow Core Photonic Band Gap Fiber using Time-of-Flight and S2 Techniques 2012 ,		4
307	Selective wavelength conversion in a few-mode fiber. <i>Optics Express</i> , 2019 , 27, 24072-24081	3.3	4
306	Hollow Core Photonic Bandgap fibers for Telecommunications: Opportunities and Potential Issues 2012 ,		4
305	High gain Bi-doped all fiber amplifier for O-band DWDM optical fiber communication 2019,		4
304	MIMO-less Space Division Multiplexing Transmission over 1 km Elliptical Core Few Mode Fiber 2017 ,		4
303	An Optical Frequency Comb Generator as a Broadband Pulse Source 2009,		4
302	OTDM to WDM Format Conversion Based on Cascaded SHG/DFG in a Single PPLN Waveguide 2010 ,		4
301	High-power, electronically controlled source of user-defined vortex and vector light beams based on a few-mode fiber amplifier. <i>Photonics Research</i> , 2021 , 9, 856	6	4
300	Gas-induced differential refractive index enhanced guidance in hollow-core optical fibers. <i>Optica</i> , 2021 , 8, 916	8.6	4
299	Highly efficient frequency doubling and quadrupling of a short-pulsed thulium fiber laser. <i>Applied Physics B: Lasers and Optics</i> , 2018 , 124, 59	1.9	3
298	Dual hollow-core anti-resonant fibres 2016 ,		3
297	Toward High Accuracy Positioning in 5G via Passive Synchronization of Base Stations Using Thermally-Insensitive Optical Fibers. <i>IEEE Access</i> , 2019 , 7, 113197-113205	3.5	3
296	First Demonstration of a 2- \$mu{rm m}\$ OTDR and Its Use in Photonic Bandgap \${rm CO}_{2}\$ Sensing Fiber. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 889-892	2.2	3
295	High performance architecture design for large scale fibre-optic sensor arrays using distributed EDFAs and hybrid TDM/DWDM. <i>Measurement Science and Technology</i> , 2013 , 24, 094024	2	3
294	2017,		3
293	2017,		3

292	2017,		3
291	Power Consumption in Multi-core Fibre Networks 2017 ,		3
290	Demonstration of arbitrary temporal shaping of picosecond pulses in a radially polarized Yb-fiber MOPA with > 10 W average power. <i>Optics Express</i> , 2017 , 25, 15402-15413	3.3	3
289	49.6 Gb/s direct detection DMT transmission over 40 km single mode fibre using an electrically packaged silicon photonic modulator. <i>Optics Express</i> , 2017 , 25, 29798-29811	3.3	3
288	Volume Manufacturing of Hollow Core Photonic Band Gap Fibers: Challenges and Opportunities 2015 ,		3
287	A DSP-assisted symbol-cascade mobile fronthaul solution with large capacity and neat RRHs 2015 ,		3
286	Quadrature decomposition of optical fields using two orthogonal phase sensitive amplifiers 2014,		3
285	Generation of mode-locked optical pulses at 1035 nm from a fiber Bragg grating stabilized semiconductor laser diode. <i>Optics Express</i> , 2014 , 22, 13366-73	3.3	3
284	Few-mode EDFA Supporting 5 Spatial Modes with Reconfigurable Differential Modal Gain Control 2013 ,		3
283	Multimode EDFA performance in mode-division multiplexed transmission systems 2013,		3
282	Analysis of acceptable spectral windows of quadratic cascaded nonlinear processes in a periodically poled lithium niobate waveguide. <i>Optics Express</i> , 2011 , 19, 8327-35	3.3	3
281	Use of a pulsed fibre laser as an excitation source for photoacoustic tomography 2011,		3
280	Saturation effects in degenerate phase sensitive fiber optic parametric amplifiers 2010,		3
279	Recent advances in highly nonlinear fibres 2010 ,		3
278	Multichannel Wavelength Conversion of 40-Gb/s Nonreturn-to-Zero DPSK Signals in a LeadBilicate Fiber. <i>IEEE Photonics Technology Letters</i> , 2010 , 22, 1153-1155	2.2	3
277	Multiple access interference rejection in OCDMA using a two-photon absorption based semiconductor device. <i>Optics Communications</i> , 2009 , 282, 1281-1286	2	3
276	All fiber components for multimode SDM systems 2012,		3
275	1.45 Tbit/s, Low Latency Data Transmission through a 19-Cell Hollow Core Photonic Band Gap Fibre 2012 ,		3

274	Improved method for estimating the minimum length of modal filters fabricated for stellar interferometry. <i>Optics Express</i> , 2009 , 17, 1935-46	3.3	3
273	Optical WDM regeneration: status and future prospects 2009 ,		3
272	Developing Single-Mode Tellurite Glass Holey Fiber for Infrared Nonlinear Applications. <i>Advances in Science and Technology</i> , 2008 , 55, 108-117	0.1	3
271	Experimental Investigation of a Dispersion-Managed Multi-channel 2R Optical Regenerator 2008,		3
270	Demonstration of a 16-channel code-reconfigurable OCDMA/DWDM system 2007,		3
269	Ultraviolet writing of channel waveguides in proton-exchanged LiNbO3. <i>Journal of Applied Physics</i> , 2007 , 101, 014110	2.5	3
268	Linear-distortion compensation using XPM with parabolic pulses 2007,		3
267	Frequency-resolved optical gating in a quasi-phase-matched LiNbO3 waveguide. <i>IEEE Photonics Technology Letters</i> , 2005 , 17, 849-851	2.2	3
266	Optical regeneration using self-phase modulation and quasi-continuous filtering. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 1350-1352	2.2	3
265	Heavy metal oxide glass holey fibers with high nonlinearity 2005,		3
264	Exploring the optical properties of holey fibres. AIP Conference Proceedings, 2001,	Ο	3
263	Dispersion compensation of 16 ps pulses over 100 km of step-index fibre using cascaded chirped fibre gratings. <i>Electronics Letters</i> , 1995 , 31, 1004-1006	1.1	3
262	Ultra-Long-Haul WDM Transmission in a Reduced Inter-Modal Interference NANF Hollow-Core Fiber 2021 ,		3
261	Hollow Core NANFs with Five Nested Tubes and Record Low Loss at 850, 1060, 1300 and 1625nm 2021 ,		3
260	Passively Mode-Locked Fiber Laser Incorporating Adaptive Filtering and Dispersion Management 2013 ,		3
259	Fusion-Spliced Highly Nonlinear Soft-glass W-type Index Profiled Fibre with Ultra-flattened, Low Dispersion Profile in 1.55µm Telecommunication Window 2011 ,		3
258	High pulse energy fibre laser as an excitation source for photoacoustic tomography. <i>Optics Express</i> , 2020 , 28, 34255-34265	3.3	3
257	Optical nonlinearity mitigation of 6 🛭 0 GBd polarization-division multiplexing 16 QAM signals in a field-installed transmission link 2017 ,		3

256	Optical Phase Conjugation in Installed Optical Networks 2018,		3
255	Channel Selective Wavelength Conversion by Means of Inter Modal Four Wave Mixing 2019,		3
254	Dissimilatory Fe(III) reduction by Clostridium beijerinckii isolated from freshwater sediment using Fe(III) maltol enrichment		3
253	Field Trial of WDM-OTDM Transmultiplexing employing Photonic Switch Fabric-based Buffer-less Bit-interleaved Data Grooming and All-Optical Regeneration 2009 ,		3
252	Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission 2012 ,		3
251	First Investigation of Longitudinal Defects in Hollow Core Photonic Bandgap Fibers 2014,		3
250	. Journal of Lightwave Technology, 2021 , 39, 1458-1463	4	3
249	Optical Fiber Delay Lines in Microwave Photonics: Sensitivity to Temperature and Means to Reduce it. <i>Journal of Lightwave Technology</i> , 2021 , 39, 2311-2318	4	3
248	Real-world evidence: Patient views on asthma in respiratory specialist clinics in America. <i>Annals of Allergy, Asthma and Immunology</i> , 2021 , 126, 385-393.e2	3.2	3
247	Numerical and experimental study on the impact of chromatic dispersion on O-band direct-detection transmission. <i>Applied Optics</i> , 2021 , 60, 4383-4390	1.7	3
246	Wavelength conversion technique for optical frequency dissemination applications. <i>Optics Letters</i> , 2016 , 41, 1716-9	3	3
245	Finesse Limits in Hollow Core Fiber based Fabry-Perot interferometers. <i>Journal of Lightwave Technology</i> , 2021 , 39, 4489-4495	4	3
244	High spatial-density, cladding-pumped 6-mode 7-core fiber amplifier for C-band operation. <i>Optics Express</i> , 2021 , 29, 30675-30681	3.3	3
243	Hollow-Core NANF for High-Speed Short-Reach Transmission in the S+C+L-Bands. <i>Journal of Lightwave Technology</i> , 2021 , 39, 6167-6174	4	3
242	ML-Assisted Equalization for 50-Gb/s/ID-Band CWDM Transmission Over 100-km SMF. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2022 , 28, 1-10	3.8	3
241	High-power, high-efficiency, all-fiberized-laser-pumped, 260-nm, deep-UV laser for bacterial deactivation. <i>Optics Express</i> , 2021 , 29, 42485	3.3	3
240	Exploring nonlinear pulse propagation, Raman frequency conversion and near octave spanning supercontinuum generation in atmospheric air-filled hollow-core Kagom[fiber 2017,		2
239	Amplification of 12 OAM States in an Air-Core EDF 2015 ,		2

238	Recent Progress in the Development of Few Mode Fiber Amplifiers 2015,		2
237	. IEEE Photonics Technology Letters, 2020 , 32, 795-798	2.2	2
236	Novel hollow core fibers for ultra-high power delivery 2017 ,		2
235	Novel fibre lasers as excitation sources for photoacoustic tomography and microscopy 2016,		2
234	Long Length Fibre Fabry-Perot Interferometers and their Applications in Fibre Characterization and Temperature Sensing 2019 ,		2
233	Signal Regeneration Techniques for Advanced Modulation Formats 2014 ,		2
232	10🛮 0 MDM Transmission over 24 km of Ring-Core Fibre using Mode Selective Photonic Lanterns and Sparse Equalization 2017 ,		2
231	In-service Crosstalk Monitoring for Dense Space Division Multiplexed Multi-core Fiber Transmission Systems 2017 ,		2
230	Phase and amplitude regeneration through sequential PSA and FWM saturation in HNLF 2015,		2
229	All-Fiber Spatial Mode Selective Filter for Compensating Mode Dependent Loss in MDM Transmission Systems 2015 ,		2
228	On the role of signal-pump ratio in FWM-based phase preserving amplitude regeneration 2015,		2
227	Few-Mode TDFA for Mode Division Multiplexing at 2µm 2014 ,		2
226	Highly Nonlinear Tellurite Glass Fiber for Broadband Applications 2014,		2
225	Modal Gain Control in a Multimode Erbium Doped Fiber Amplifier Incorporating Ring Doping 2012 ,		2
224	New Developments in Tellurite Glass Fibers 2013 ,		2
223	LMA effectively single-mode thulium doped fibre with normal dispersion at wavelengths around 2um 2013 ,		2
222	100GHz Grid-Aligned Reconfigurable Polarization Insensitive Black-Box Wavelength Converter 2013 ,		2
221	Robust Low Loss Splicing of Hollow Core Photonic Bandgap Fiber to Itself 2013 ,		2

220	Bend sensors based on periodically tapered soft glass fibers 2011 ,		2
219	Supercontinuum generation and nonlinearity in soft glass fibres82-118		2
218	A single-mode, high index-contrast, lead silicate glass fibre with high nonlinearity, broadband near-zero dispersion at telecommunication wavelengths 2010 ,		2
217	Elimination of the chirp of optical pulses through cascaded nonlinearities in periodically poled lithium niobate waveguides. <i>Optics Letters</i> , 2010 , 35, 3724-6	3	2
216	Phase locking and carrier extraction schemes for phase sensitive amplification 2010 ,		2
215	Generation of ultra-high repetition rate pulses in a highly nonlinear dispersion-tailored compound glass fibre 2010 ,		2
214	Externally modulated diode-seeded Yb3+-doped fiber MOPA pumped high power optical parametric oscillator 2009 ,		2
213	Multi-wavelength all-optical regeneration techniques 2009,		2
212	Generation of compressed optical pulses beyond 160 GHz based on two injection-locked CW lasers 2010 ,		2
211	Wavelength-swept fiber laser with frequency-shifted feedback		2
210	2R regeneration architectures based on multi-segmented fibres 2008,		2
210	2R regeneration architectures based on multi-segmented fibres 2008, Efficient higher-order mode filtering in multimode optical fiber based on an optical microwire 2008,		2
209	Efficient higher-order mode filtering in multimode optical fiber based on an optical microwire 2008, Investigation of Timing Jitter Reduction in a bidirectional 2R All-Optical Mamyshev Regenerator	2.2	2
209	Efficient higher-order mode filtering in multimode optical fiber based on an optical microwire 2008, Investigation of Timing Jitter Reduction in a bidirectional 2R All-Optical Mamyshev Regenerator 2008, Distributed-Phase OCDMA Encoder Decoders Based on Fiber Bragg Gratings. IEEE Photonics	2.2	2
209 208 207	Efficient higher-order mode filtering in multimode optical fiber based on an optical microwire 2008, Investigation of Timing Jitter Reduction in a bidirectional 2R All-Optical Mamyshev Regenerator 2008, Distributed-Phase OCDMA EncoderDecoders Based on Fiber Bragg Gratings. IEEE Photonics Technology Letters, 2007, 19, 574-576 Low Walk-Off Kerr-Shutter Using a Dispersion-Shifted Lead Silicate Holey Fiber. IEEE Photonics		2 2
209 208 207 206	Efficient higher-order mode filtering in multimode optical fiber based on an optical microwire 2008, Investigation of Timing Jitter Reduction in a bidirectional 2R All-Optical Mamyshev Regenerator 2008, Distributed-Phase OCDMA EncoderDecoders Based on Fiber Bragg Gratings. IEEE Photonics Technology Letters, 2007, 19, 574-576 Low Walk-Off Kerr-Shutter Using a Dispersion-Shifted Lead Silicate Holey Fiber. IEEE Photonics Technology Letters, 2007, 19, 1112-1114		2 2 2

(2012-2007)

202	Self-Phase Modulation-based 2R optical regenerator for the simultaneous processing of two WDM channels 2007 ,		2
201	Delay-gain decoupling in Brillouin-assisted slow light. <i>Optics Letters</i> , 2007 , 32, 2701-3	3	2
200	A Reconfigurable Optical Header Recognition System for Optical Packet Routing Applications. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 2395-2397	2.2	2
199	Cascaded-chi(2)-interaction-based frequency-resolved optical gating in a periodically poled LiNbO3 waveguide. <i>Optics Letters</i> , 2006 , 31, 244-6	3	2
198	Erbium Doped Holey Fiber Devices 2004 , OMD4		2
197	Intensity noise reduction of incoherent light using semiconductor optical amplifiers		2
196	Microstructured fibers for high power applications 2005,		2
195	Improving bending losses in holey fibers 2005,		2
194	The light-induced structural phase transition in confining gallium and its photonic applications. <i>Journal of Luminescence</i> , 2000 , 87-89, 646-648	3.8	2
193	A 4-channel WDM/OCDMA system incorporating 255-chip, 320 Gchip/s quaternary phase coding and decoding gratings		2
192	Multi-mJ, multi-watt Q-switched fiber laser		2
191	Hollow-core fiber delivery of broadband mid-infrared light for remote spectroscopy <i>Optics Express</i> , 2022 , 30, 7044-7052	3.3	2
190	High-brightness 210 🏿 pulsed Raman fiber source 2008 ,		2
189	Recent breakthroughs in hollow core fiber technology 2020,		2
188	Detailed phase matching characterization of inter-modal four-wave mixing in a two-mode fiber 2016 ,		2
187	Flat, Broadband Supercontinuum Generation at Low Pulse Energies in a Dispersion-Tailored Lead-Silicate Fibre 2011 ,		2
186	Multichannel Wavelength Conversion of 40Gbit/s NRZ DPSK Signals in a Highly Nonlinear Dispersion Flattened Lead Silicate Fibre 2010 ,		2
185	Detailed study of modal gain in a multimode EDFA supporting LP01 and LP11 mode group amplification 2012 ,		2

184	Accurate Loss and Surface Mode Modeling in Fabricated Hollow-Core Photonic Bandgap Fibers 2014 ,		2
183	Ultra-high Capacity Transmission with Few-mode Silica and Hollow-core Photonic Bandgap Fibers 2014 ,		2
182	52.6 Gbit/s Single-Channel Directly-Modulated Optical Transmitter for 2-fh Spectral Region 2015 ,		2
181	Mitigating Spectral Leakage and Sampling Errors in Spatial and Spectral (S2) Imaging 2015,		2
180	Optical Injection Locking for Carrier Phase Recovery and Regeneration 2017,		2
179	All-fiber optical interconnection for dissimilar multicore fibers with low insertion loss 2017,		2
178	Ultra-short wavelength operation of a thulium doped fiber laser in the 1620-1660nm wavelength band 2018 ,		2
177	Enabling component technologies for space division multiplexing 2018,		2
176	Hollow core fiber Fabry-Perot interferometers with finesse over 3000 2020 ,		2
175	A highly nonlinear holey fiber and its application in a regenerative optical switch 2001,		2
174	High performance, 64-chip, 160 Gchip/s fiber grating based OCDMA receiver incorporating a nonlinear optical loop mirror		2
173	Designer pulses for precise machining of silicon [A step towards photonic compositions 2012 ,		2
172	Recent Breakthroughs in Hollow Core Fiber Technology 2021 ,		2
171	Virtual Draw of Tubular Hollow-Core Fibers 2018 ,		2
170	Comparative Investigations between SSMF and Hollow-core NANF for Transmission in the S+C+L-bands 2020 ,		2
169	Assorted core air-clad fibre. <i>Electronics Letters</i> , 2000 , 36, 2065	1.1	2
168	Switching and passive mode-locking of fiber lasers using nonlinear loop mirrors (Invited Paper) 1992,		2
167	Dispersion Decreasing Fibres for Soliton Generation and Transmission Line Loss Compensation. <i>Solid-state Science and Technology Library</i> , 1996 , 277-291		2

166	Nonlinearity Mitigation for Multi-channel 64-QAM Signals in a Deployed Fiber Link through Optical Phase Conjugation 2016 ,		2
165	Optical Orbital Angular Momentum Amplifier based on an Air-Core Erbium Doped Fiber 2016,		2
164	Record High Capacity (6.8 Tbit/s) WDM Coherent Transmission in Hollow-Core Antiresonant Fiber 2017 ,		2
163	Phase-Encoded Signal Regeneration Exploiting Phase Sensitive Amplification 2011 ,		2
162	Minimizing Differential Modal Gain in Cladding Pumped MM-EDFAs for Mode Division Multiplexing in C and L Bands 2014 ,		2
161	Experimental characterization of an o-band bismuth-doped fiber amplifier. <i>Optics Express</i> , 2021 , 29, 1534	,5 ₃ ·15:	3 5 5
160	4-Level Alternate-Mark-Inversion for Reach Extension in the O-Band Spectral Region. <i>Journal of Lightwave Technology</i> , 2021 , 39, 2847-2853	ļ	2
159	Detailed study of macrobending effects in a wide transmission bandwidth hollow-core photonic bandgap fiber 2016 ,		2
158	In-line polarization controller for hollow core photonic bandgap fiber. <i>Optics Communications</i> , 2021 , 481, 126552	2	2
157	Broadband Study of Inter-Modal Bragg Scattering Four Wave Mixing in Multi-Mode Fibres 2018,		2
156	Multi-wavelength fiber laser using a single multicore erbium doped fiber 2018,		2
155	Spectral Difference Interferometry for the Characterization of Optical Media. <i>Laser and Photonics Reviews</i> , 2019 , 13, 1900007	3.3	1
154	All-Fiber Passive Alignment-Free Depolarizers Capable of Depolarizing Narrow Linewidth Signals. <i>Journal of Lightwave Technology</i> , 2019 , 37, 704-714	ļ	1
153	Silicon photonic Mach Zehnder modulators for next-generation short-reach optical communication networks 2016 ,		1
152	All-optical Wavelength Conversion of Phase-encoded Signals in Silicon-rich Silicon Nitride Waveguides 2018 ,		1
151	2019,		1
150	Novel fluid dynamics model to predict draw of hollow core photonic band-gap fibres 2014,		1
149	All-Optical Regeneration of Phase Encoded Signals: Phase Sensitive Optical Regeneration 2013 , 589-639		1

148	Spontaneous Raman scattering in hollow core photonic crystal fibres 2017,	1	
147	Crosstalk Analysis of 32-Core Dense Space Division Multiplexed System for Higher Order Modulation Formats Using an Integrated Cladding-Pumped Amplifier 2017 ,	1	
146	Spectrally Efficient DMT Transmission over 40 km SMF Using an Electrically Packaged Silicon Photonic Intensity Modulator 2017 ,	1	
145	Photonic bandgap fibres for low-latency data transmission 2015 ,	1	
144	Compact higher-order mode converter based on all-fiber phase plate segment 2015,	1	
143	PSA-based phase regeneration of DPSK signals in a silicon germanium waveguide 2015 ,	1	
142	High dynamic range technique for discrete and distributed scattering loss measurement in microstructured optical fibres 2015 ,	1	
141	Development of Low Loss, Wide Bandwidth Hollow Core Photonic Bandgap Fibers 2013,	1	
140	Mode division multiplexing over 19-cell hollow-core photonic bandgap fibre by employing integrated mode multiplexer. <i>Electronics Letters</i> , 2014 , 50, 1227-1229	1.1 1	
139	Towards real-time mode content characterization of multimode fibers 2014,	1	
139	Towards real-time mode content characterization of multimode fibers 2014, Up to 64QAM (30 Gbit/s) directly-modulated and directly-detected OFDM at 2 fb wavelength 2014,	1	
138	Up to 64QAM (30 Gbit/s) directly-modulated and directly-detected OFDM at 2 fin wavelength 2014 , High sensitivity gas detection using Hollow Core Photonic Bandgap Fibres designed for mid-IR	1	
138	Up to 64QAM (30 Gbit/s) directly-modulated and directly-detected OFDM at 2 fh wavelength 2014 , High sensitivity gas detection using Hollow Core Photonic Bandgap Fibres designed for mid-IR operation 2014 ,	1	
138 137 136	Up to 64QAM (30 Gbit/s) directly-modulated and directly-detected OFDM at 2 fh wavelength 2014, High sensitivity gas detection using Hollow Core Photonic Bandgap Fibres designed for mid-IR operation 2014, Hollow Core Photonic Bandgap Fibers for Mid-IR Applications 2014, Demonstration of real-time ethernet to reconfigurable superchannel data transport over elastic	1 1	
138 137 136	Up to 64QAM (30 Gbit/s) directly-modulated and directly-detected OFDM at 2 fb wavelength 2014, High sensitivity gas detection using Hollow Core Photonic Bandgap Fibres designed for mid-IR operation 2014, Hollow Core Photonic Bandgap Fibers for Mid-IR Applications 2014, Demonstration of real-time ethernet to reconfigurable superchannel data transport over elastic optical network 2014, High sensitivity methane and ethane detection using low-loss mid-IR hollow-core photonic bandgap	1 1 1	
138 137 136 135	Up to 64QAM (30 Gbit/s) directly-modulated and directly-detected OFDM at 2 fh wavelength 2014, High sensitivity gas detection using Hollow Core Photonic Bandgap Fibres designed for mid-IR operation 2014, Hollow Core Photonic Bandgap Fibers for Mid-IR Applications 2014, Demonstration of real-time ethernet to reconfigurable superchannel data transport over elastic optical network 2014, High sensitivity methane and ethane detection using low-loss mid-IR hollow-core photonic bandgap fibers 2014,	1 1 1 1	

130	Thulium-doped Fiber Amplifier for Optical Communications at 2µm 2013 ,	1
129	QAM Synthesis by Direct Modulation of Semiconductor Lasers under Injection Locking 2013,	1
128	Optical fibre microwire sensors 2011 ,	1
127	All-optical phase and amplitude regeneration properties of a 40Gbit/s DPSK black-box phase sensitive amplifier 2010 ,	1
126	Applications of highly nonlinear dispersion tailored lead silicate fibres for high speed optical communications 2010 ,	1
125	Phase sensitive amplifiers for regeneration of phase encoded optical signal formats 2011 ,	1
124	Robust optical injection locking to a 250 MHz frequency comb without narrow-band optical pre-filtering 2011 ,	1
123	Highly nonlinear non-silica glass microstructured optical fibers with near-zero dispersion and dispersion slope for 1.55µm applications 2009 ,	1
122	Control of modal properties and modal effects in air guiding photonic bandgap fibres 2009,	1
121	Efficient all-optical wavelength converter using saw-tooth pulses 2009,	1
120	Visible and mid-IR output using a fibre laser pump source 2009 ,	1
119	Highly efficient, high power, inband-pumped Erbium/Ytterbium-codoped fiber laser 2011 ,	1
119	Highly efficient, high power, inband-pumped Erbium/Ytterbium-codoped fiber laser 2011 , Reducing loss in practical single ring antiresonant hollow core fibres 2011 ,	1
118	Reducing loss in practical single ring antiresonant hollow core fibres 2011 ,	1
118	Reducing loss in practical single ring antiresonant hollow core fibres 2011, All-optical regeneration based on phase sensitive amplification 2011,	1
118 117 116	Reducing loss in practical single ring antiresonant hollow core fibres 2011, All-optical regeneration based on phase sensitive amplification 2011, Method to Visualise and Measure Individual Modes in a Few Moded Fibre 2012, Phase noise characterization of injection locked semiconductor lasers to a 250 MHz optical	1 1

112	Over 55W of frequency doubled light at 530 nm pumped by an all-fiber diffraction limited picosecond fibre MOPA 2010 ,		1
111	Experimental Investigation of Wide Bandwidth Single and Dual Pump non-Degenerate Phase Sensitive Amplifiers 2010 ,		1
110	Comment on the reported fiber attenuations in the visible regime in "Fabrication of glass photonic crystal fibers with a die-cast process". <i>Applied Optics</i> , 2008 , 47, 5078-80; discussion 5081	0.2	1
109	Timing jitter tolerant OTDM demultiplexing using a saw-tooth pulse shaper 2008,		1
108	Periodic Signal Processing Using a Brillouin Gain Comb 2008 ,		1
107	TDM-to-WDM conversion from 130 Gbit/s to 3 🖽 Gbit/s using XPM in a NOLM switch 2008,		1
106	An all-optical grooming switch to interconnect access and metro ring networks 2008,		1
105	Photonic bandgap fiber optical correlation spectroscopy gas sensor 2008,		1
104	Broadband supercontinuum using single-mode/dual-mode tellurite glass holey fibers with large mode area 2008 ,		1
103	Linear frequency resolved optical gating as a line monitoring tool 2006,		1
102	Novel fabrication method of highly-nonlinear silica holey fibres 2006,		1
101	Advances and limitations in the modeling of fabricated photonic bandgap fibers 2006,		1
100	Rapidly reconfigurable phase code generation and recognition using fiber Bragg gratings 2006,		1
99	Realistic designs of silica hollow-core bandgap fibers free of surface 2006 ,		1
98	Comparative study of spectrum-sliced incoherent light systems employing SOA-based noise suppression 2006 ,		1
97	High Average Power, High Energy, Femto-second Fiber Chirped Pulse Amplification System 2007 ,		1
96	High-power high-brightness green laser based on a frequency doubled picosecond fiber laser 2007,		1
95	Buried slab waveguides in LiNbO/sub 3/ nonlinear photonic crystals		1

(2012-2005)

94	Short pulse high power fiber laser systems 2005 ,		1
93	Advances in microstructured fiber technology 2005,		1
92	Errata to All-Optical Pulse Reshaping and Retiming Systems Incorporating Pulse Shaping Fiber Bragg Grating [] Journal of Lightwave Technology, 2006, 24, 2963-2963	4	1
91	Opportunities in high-power fiber lasers 2006 ,		1
90	Proton-exchanged LiNbO/sub 3/ waveguides for photonic applications		1
89	A tunable, femtosecond pulse source operating in the range 1.06-1.33 microns based on an Yb doped holey fiber amplifier 2001 ,		1
88	A practical, low-noise, stretched pulse Yb/sup 3+/ doped fiber laser 2001 ,		1
87	Holey fibers: fundamentals and applications 2002,		1
86	Confinement loss in highly nonlinear holey optical fibres 2002,		1
85	Introduction to the issue on novel and specialty fibers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2001 , 7, 401-402	3.8	1
84	Holey fibres: properties, applications and future directions 2001,		1
83	Efficient harmonic generation with large-mode-area fiber sources 1998,		1
82	A robust, large air fill fraction holey fibre 1999 ,		1
81	Broadband optical switching in confined gallium at milliwatt power levels		1
80	Nonlinearity in holey optical fibers: measurement and future opportunities-errata. <i>Optics Letters</i> , 1999 , 24, 1647	3	1
79	Measurement of group birefringence and dispersion of polarisation maintaining erbium-doped silica fibre. <i>Electronics Letters</i> , 1992 , 28, 2140	1.1	1
78	Widely tunable actively mode-locked Bi-doped fiber laser operating in the O-band. <i>IEEE Photonics Technology Letters</i> , 2022 , 1-1	2.2	1
77	All-Optical broadband phase noise emulation 2012 ,		1

76	Recent Advances in Highly Nonlinear Microstructured Optical Fibers and their Applications 2008,	1
75	32 W of average power in 24-fs pulses from a passively mode-locked thin disk laser with nonlinear fiber compression 2005 ,	1
74	Picosecond Fiber MOPA Pumped Supercontinuum Source With 39 W Output Power 2010 ,	1
73	Single Polarization, High Energy Pulsed Fiber Laser from 200 fb Core Yb-Doped Fiber 2016 ,	1
72	S2 Measurement of Higher Order Mode Content in Low Loss Hypocycloid Kagom[Hollow Core Photonic Crystal Fiber 2016 ,	1
71	First Investigation on Double- and Single-sideband Formats in BDFA-enabled O-band Transmission 2020 ,	1
70	Experimental Characterization of Bismuth-Doped Fibre Amplifier: Electrical NF, PDG, and XGM 2020 ,	1
69	Phase Sensitive Amplification in a Highly Nonlinear Lead-Silicate Fibre 2011 ,	1
68	In-situ thermal/Brillouin characterization of a high-power fiber laser based on Brillouin optical time domain analysis 2008 ,	1
67	Highly-efficient and low return-loss coupling of standard and antiresonant hollow-core fibers 2019,	1
66	Dipole radiation model for surface roughness scattering in hollow-core fibers 2012,	1
65	HeXLN: A 2-Dimensional nonlinear photonic crystal 1999 ,	1
64	Advances in Optical Signal Processing Based on Phase Sensitive Parametric Mixing 2012,	1
63	The fabrication and modelling of non-silica microstructured optical fibres 2001,	1
62	Phase-Sensitive Wavelength Conversion Based on Cascaded Quadratic Processes in Periodically Poled Lithium Niobate Waveguides 2011 ,	1
61	Soft Glass Based Large Mode Area Photonic Bandgap Fibre for Mid-Infrared Applications 2011 ,	1
60	Overcoming Electronic Limits to Optical Phase Measurements with an Optical Phase-only Amplifier 2012 ,	1
59	30.7 Tb/s (96B20 Gb/s) DP-32QAM transmission over 19-cell Photonic Band Gap Fiber 2013 ,	1

58	Nonlinear optical properties of ytterbium-doped tantalum pentoxide rib waveguides on silicon at telecom wavelengths 2016 ,		1
57	Flexible Scheme for Measuring Chromatic Dispersion Based on Interference of Frequency Tones 2017 ,		1
56	Anti-Resonant, Mid-Infrared Silica Hollow-Core Fiber 2020 ,		1
55	Transmission of 61 C-band Channels with L-band Interferers over Record 618km of Hollow-Core-Fiber 2020 ,		1
54	The thermal sensitivity of optical path length in standard single mode fibers down to cryogenic temperatures 2019 ,		1
53	High Spatial Density 6-Mode 7-Core Multicore L-Band Fiber Amplifier 2019 ,		1
52	AMI for Nonlinearity Mitigation in O-Band Transmission 2019,		1
51	Broadband Bismuth-Doped Fiber Amplifier With a Record 115-nm Bandwidth in the O and E Bands 2020 ,		1
50	Generation and Coherent Detection of 2-µm-band WDM-QPSK Signals by On-chip Spectral Translation 2020 ,		1
49	Pressure in As-drawn Hollow Core Fibers 2020 ,		1
48	Optical Regeneration. Springer Series in Optical Sciences, 2015, 129-155	0.5	1
47	Broadband Silica-Based Thulium Doped Fiber Amplifier Employing Dual-Wavelength Pumping 2016 ,		1
46	Independent core attenuation control in multicore fibers by direct femtosecond laser inscription 2017 ,		1
45	High peak power picosecond pulses from an all-fiber master oscillator power amplifier seeded by a 1.95 fb gain-switched diode 2017 ,		1
44	Generation of high repetition rate (>100 GHz) ultrastable pulse trains from a coherent optical beat-signal through nonlinear compression using a high SBS-threshold fiber 2010 ,		1
43	Phase Noise and Jitter Characterization of Pulses Generated by Optical Injection Locking to an Optical Frequency Comb 2012 ,		1
42	Homodyne Operation of a Phase-only Optical Amplifier 2012,		1
41	Gas Absorption between 1.8 and 2.1 μm in Low Loss (5.2 dB/km) HC-PBGF 2012 ,		1

40	Practical issues and some lessons learned from realization of phase sensitive parametric regenerators 2012 ,		1
39	First Demonstration of a Low Loss 37-cell Hollow Core Photonic Bandgap Fiber and its Use for Data Transmission 2013 ,		1
38	Accurate Modelling of Hollow Core Photonic Bandgap Fibre 2014 ,		1
37	Generation of ~625nJ Pulses from a Mamyshev Oscillator with a few-mode LMA Yb-doped Fiber 2021 ,		1
36	Impact of Pressure-Induced Differential Refractive Index in Raman Spectroscopy using Hollow-Core Fibres 2021 ,		1
35	Compact chirped-pulse amplification systems based on highly Tm-doped germanate fiber. <i>Optics Letters</i> , 2021 , 46, 3013-3016	3	1
34	A Longitudinal Study of Power Relations in a British Olympic Sport Organization. <i>Journal of Sport Management</i> , 2021 , 35, 312-324	2.1	1
33	Cavity effect on phase noise of Fabry-Perot modulator-based optical frequency comb 2016 ,		1
32	Optoelectronic oscillator with low temperature induced frequency drift 2016,		1
31	Nonlinear control of coherent absorption and its optical signal processing applications. <i>APL Photonics</i> , 2019 , 4, 106109	5.2	1
30	Performance-enhanced Amplified O-band WDM Transmission using Machine Learning based Equalization 2021 ,		1
29	Widely-tunable synchronisation-free picosecond laser source for multimodal CARS, SHG, and two-photon microscopy. <i>Biomedical Optics Express</i> , 2021 , 12, 1010-1019	3.5	1
28	Fully integrated SDM amplifiers 2018,		1
27	Low-Latency WDM Intensity-Modulation and Direct-Detection Transmission Over >100 km Distances in a Hollow Core Fiber. <i>Laser and Photonics Reviews</i> , 2021 , 15, 2100102	8.3	1
26	Thinly coated hollow core fiber for improved thermal phase-stability performance. <i>Optics Letters</i> , 2021 , 46, 5177-5180	3	1
25	Phase Preserving Amplitude Saturation Through Tone Synthesis Assisted Saturated Four-Wave Mixing. <i>Journal of Lightwave Technology</i> , 2020 , 38, 1817-1826	4	O
24	Analysis of the Dynamic Responses of SOA Wavelength Converters Using Linear Frequency Resolved Gating Technique. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 1079-1081	2.2	0
23	Tunable CW Bi-Doped Fiber Laser System From 1320 to 1370 nm Using a Fiber Bragg Grating. <i>IEEE Photonics Technology Letters</i> , 2020 , 32, 1443-1446	2.2	О

22	Polarization Effects on Thermally Stable Latency in Hollow-Core Photonic Bandgap Fibers. <i>Journal of Lightwave Technology</i> , 2021 , 39, 2142-2150	4	О
21	Wideband and Low-Loss Mode Scrambler for Few-Mode Fibers Based on Distributed Multiple Point-Loads. <i>IEEE Photonics Journal</i> , 2021 , 13, 1-7	1.8	О
20	Pulse energy packing effects on material transport during laser processing of () silicon. <i>Applied Physics A: Materials Science and Processing</i> , 2018 , 124, 1	2.6	О
19	Optical Amplifiers for Mode Division Multiplexing 2018 , 1-25		O
18	Hollow-core fiber Fabry-Perot interferometers with reduced sensitivity to temperature <i>Optics Letters</i> , 2022 , 47, 2510-2513	3	0
17	Real-Time Modal Analysis via Wavelength-Swept Spatial and Spectral (\${S}^{2})\$ Imaging. <i>IEEE Photonics Technology Letters</i> , 2016 , 1-1	2.2	
16	SINGLE MODE ERBIUM YTTERBIUM-DOPED FIBER LASER WITH MULTIMODE PUMPING. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2010 , 19, 203-208	0.8	
15	Microstructured fibres: a positive impact on defence technology? 2006 , 6397, 639702		
14	40 GHz Adiabatic Soliton Generation from a Dual Frequency Beat Signal Using Dispersion Decreasing Fiber Based Raman Amplification 2005 , 409-415		
13	Spectral properties of bacterial nitric oxide reductase. <i>Biochemical Society Transactions</i> , 2002 , 30, A76-,	A7561	
12	Light-Induced Structural Phase Transition in Confining Gallium and Associated Gigantic Optical Nonlinearity. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 543, 275		
11	Shaping of soliton- into rectangular-pulses using a superstructure fiber Bragg grating 1999 , AD1		
10	Broadband Mode Scramblers for Few-Mode Fibers Based on 3D Printed Mechanically Induced Long-Period Fiber Gratings. <i>IEEE Photonics Technology Letters</i> , 2022 , 34, 169-172	2.2	
9	Compact picosecond mid-IR PPLN OPO in burst-mode operation. <i>EPJ Web of Conferences</i> , 2020 , 243, 18004	0.3	
8	Compact picosecond mid-IR PPLN OPO with controllable peak powers. <i>OSA Continuum</i> , 2020 , 3, 2741	1.4	
7	Optical Amplifiers for Mode Division Multiplexing 2019 , 849-873		
6	High Frequency Bright and Dark Soliton Sources Based on Dispersion Profiled Fibre Circuitry and Their Applications 1996 , 157-160		
	European Union ACTS Project MIDAS: Objectives and Progress to Date. Solid-state Science and		

4	Adaptive Phase Shaping in a Fiber Chirped Pulse Amplification System. <i>Springer Series in Chemical Physics</i> , 2009 , 953-955	0.3
3	Development of Highly Nonlinear Extruded Lead Silicate Holey Fibers with Novel Dispersive Properties. <i>Ceramic Transactions</i> ,1-9	0.1
2	All-fiber saturable absorber based on nonlinear multimode interference with enhanced modulation depth. <i>Applied Optics</i> , 2021 , 60, 9007-9011	1.7
1	Polarization Stable Hollow Core Fiber Interferometer With Faraday Rotator Mirrors. <i>IEEE Photonics Technology Letters</i> , 2021 , 33, 1503-1506	2.2