Jun Ding

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4354992/jun-ding-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

359	15,281	69	106
papers	citations	h-index	g-index
371 ext. papers	18,301 ext. citations	8.9 avg, IF	6.94 L-index

#	Paper	IF	Citations
359	3D-Printed Hierarchical Ceramic Architectures for Ultrafast Emulsion Treatment and Simultaneous Oil Water Filtration 2022 , 4, 740-750		2
358	Tuning the near room temperature oxidation behavior of high-entropy alloy nanoparticles. <i>Nano Research</i> , 2022 , 15, 3569-3574	10	0
357	Anomalous size effect on yield strength enabled by compositional heterogeneity in high-entropy alloy nanoparticles <i>Nature Communications</i> , 2022 , 13, 2789	17.4	O
356	Additive Manufacturing Solidification Methodologies for Ink Formulation. <i>Additive Manufacturing</i> , 2022 , 102939	6.1	1
355	High Temperature Co-firing of 3D-Printed Al-ZnO/Al2O3 Multi-Material Two-Phase Flow Sensor. Journal of Materiomics, 2021 ,	6.7	2
354	Chemical short-range order in body-centered-cubic TiZrHfNb high-entropy alloys. <i>Applied Physics Letters</i> , 2021 , 119, 201908	3.4	1
353	Tuning the Spin Density of Cobalt Single-Atom Catalysts for Efficient Oxygen Evolution. <i>ACS Nano</i> , 2021 , 15, 7105-7113	16.7	21
352	Fabrication of 3D-Printed Ceramic Structures for Portable Solar Desalination Devices. <i>ACS Applied Materials & ACS Applied & ACS A</i>	9.5	12
351	Tension-compression asymmetry in amorphous silicon. <i>Nature Materials</i> , 2021 , 20, 1371-1377	27	12
350	Influence of the Aspect Ratio of Iron Oxide Nanorods on Hysteresis-Loss-Mediated Magnetic Hyperthermia <i>ACS Applied Bio Materials</i> , 2021 , 4, 4809-4820	4.1	4
349	Microlattice Metamaterials with Simultaneous Superior Acoustic and Mechanical Energy Absorption. <i>Small</i> , 2021 , 17, e2100336	11	17
348	Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys. <i>Materials Today</i> , 2021 , 46, 28-34	21.8	20
347	Conductivity Modulation of 3D-Printed Shellular Electrodes through Embedding Nanocrystalline Intermetallics into Amorphous Matrix for Ultrahigh-Current Oxygen Evolution. <i>Advanced Energy Materials</i> , 2021 , 11, 2100968	21.8	2
346	A Stable [4,3]Peri-acene Diradicaloid: Synthesis, Structure, and Electronic Properties. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 4464-4469	16.4	10
345	Additively manufactured heterogeneously porous metallic bone with biostructural functions and bone-like mechanical properties. <i>Journal of Materials Science and Technology</i> , 2021 , 62, 173-179	9.1	22
344	Bioinspired Fractal Design of Waste Biomass-Derived Solar Thermal Materials for Highly Efficient Solar Evaporation. <i>Advanced Functional Materials</i> , 2021 , 31, 2007648	15.6	36
343	Robust, 3D-printed hydratable plastics for effective solar desalination. <i>Nano Energy</i> , 2021 , 79, 105436	17.1	18

(2020-2021)

342	3D printing-assisted gyroidal graphite foam for advanced supercapacitors. <i>Chemical Engineering Journal</i> , 2021 , 416, 127885	14.7	14
341	A Stable [4,3]Peri-acene Diradicaloid: Synthesis, Structure, and Electronic Properties. <i>Angewandte Chemie</i> , 2021 , 133, 4514-4519	3.6	2
340	Design and Manufacture of 3D-Printed Batteries. <i>Joule</i> , 2021 , 5, 89-114	27.8	30
339	Two-Dimensional Conjugated Covalent Organic Framework Films via Oxidative CL Coupling Reactions at a Liquid Liquid Interface. <i>Organic Materials</i> , 2021 , 03, 060-066	1.9	1
338	Universal nature of the saddle states of structural excitations in metallic glasses. <i>Materials Today Physics</i> , 2021 , 17, 100359	8	6
337	Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order. <i>Nature Communications</i> , 2021 , 12, 4873	17.4	21
336	Interfacial control of domain structure and magnetic anisotropy in La0.67Sr0.33MnO3 manganite heterostructures. <i>Physical Review B</i> , 2021 , 104,	3.3	3
335	Additive manufacturing of high-entropy alloys by thermophysical calculations and in situ alloying. <i>Journal of Materials Science and Technology</i> , 2021 , 94, 53-66	9.1	14
334	Solar Evaporation: Bioinspired Fractal Design of Waste Biomass-Derived Solar Thermal Materials for Highly Efficient Solar Evaporation (Adv. Funct. Mater. 3/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170020	15.6	3
333	Defects Engineering Induced Ultrahigh Magnetization in Rare Earth Element Nd-doped MoS2. <i>Advanced Quantum Technologies</i> , 2021 , 4, 2000093	4.3	5
332	Colossal Magnetization and Giant Coercivity in Ion-Implanted (Nb and Co) MoS Crystals. <i>ACS Applied Materials & ACS Applied & ACS Appl</i>	9.5	8
331	Imprinting Ferromagnetism and Superconductivity in Single Atomic Layers of Molecular Superlattices. <i>Advanced Materials</i> , 2020 , 32, e1907645	24	11
330	Short-range order and its impact on the CrCoNi medium-entropy alloy. <i>Nature</i> , 2020 , 581, 283-287	50.4	254
329	Super-hygroscopic film for wearables with dual functions of expediting sweat evaporation and energy harvesting. <i>Nano Energy</i> , 2020 , 75, 104873	17.1	20
328	Ultrafast Exfoliation of 2D Materials by Solvent Activation and One-Step Fabrication of All-2D-Material Photodetectors by Electrohydrodynamic Printing. <i>ACS Applied Materials & ACS APPLIED & ACS ACS APPLIED & ACS ACS APPLIED & ACS APPLIED & ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	24
327	Multimaterial 3D-printing of graphene/Li0.35Zn0.3Fe2.35O4 and graphene/carbonyl iron composites with superior microwave absorption properties and adjustable bandwidth. <i>Carbon</i> , 2020 , 167, 62-74	10.4	44
326	Domain Engineering in ReS2 by Coupling Strain during Electrochemical Exfoliation. <i>Advanced Functional Materials</i> , 2020 , 30, 2003057	15.6	8
325	Machine learning bridges local static structure with multiple properties in metallic glasses. Materials Today, 2020 , 40, 48-62	21.8	19

324	Critical Control of Highly Stable Nonstoichiometric Mn-Zn Ferrites with Outstanding Magnetic and Electromagnetic Performance for Gigahertz High-Frequency Applications. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 16609-16619	9.5	8
323	S-shaped para-Quinodimethane-Embedded Double [6]Helicene and Its Charged Species Showing Open-Shell Diradical Character. <i>Chemistry - A European Journal</i> , 2020 , 26, 15613-15622	4.8	6
322	Integrated wearable sensors with bending/stretching selectivity and extremely enhanced sensitivity derived from agarose-based ionic conductor and its 3D-shaping. <i>Chemical Engineering Journal</i> , 2020 , 389, 124503	14.7	9
321	Electrode-controlled confinement of conductive filaments in a nanocolumn embedded symmetric Brands structure. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 1577-1582	7.1	8
320	3D global aromaticity in a fully conjugated diradicaloid cage at different oxidation states. <i>Nature Chemistry</i> , 2020 , 12, 242-248	17.6	59
319	Elucidating the Nature of the Cu(I) Active Site in CuO/TiO for Excellent Low-Temperature CO Oxidation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 7091-7101	9.5	20
318	3D-printed surface-patterned ceramic membrane with enhanced performance in crossflow filtration. <i>Journal of Membrane Science</i> , 2020 , 606, 118138	9.6	26
317	Realization of Bingle-atom ferromagnetismlin graphene by CuBI4 moieties anchoring. <i>Applied Physics Letters</i> , 2020 , 116, 113102	3.4	4
316	Robust pure copper framework by extrusion 3D printing for advanced lithium metal anodes. Journal of Materials Chemistry A, 2020 , 8, 9058-9067	13	21
315	Structure-Enhanced Mechanically Robust Graphite Foam with Ultrahigh MnO Loading for Supercapacitors. <i>Research</i> , 2020 , 2020, 7304767	7.8	8
314	Metallic microlattice and epoxy interpenetrating phase composites: Experimental and simulation studies on superior mechanical properties and their mechanisms. <i>Composites Part A: Applied Science and Manufacturing</i> , 2020 , 135, 105934	8.4	12
313	Predicting the propensity for thermally activated Levents in metallic glasses via interpretable machine learning. <i>Npj Computational Materials</i> , 2020 , 6,	10.9	13
312	Formation of a four-bladed waterwheel-type chloro-bridged dicopper(ii) complex with dithiamacrocycle via double exo-coordination. <i>Dalton Transactions</i> , 2020 , 49, 1365-1369	4.3	1
311	A 3D-printing method of fabrication for metals, ceramics, and multi-materials using a universal self-curable technique for robocasting. <i>Materials Horizons</i> , 2020 , 7, 1083-1090	14.4	30
310	Three Dimensionally Free-Formable Graphene Foam with Designed Structures for Energy and Environmental Applications. <i>ACS Nano</i> , 2020 , 14, 937-947	16.7	50
309	Enhanced Magnetic Anisotropy and Orbital Symmetry Breaking in Manganite Heterostructures. <i>Advanced Functional Materials</i> , 2020 , 30, 1909536	15.6	10
308	Controllable and Stable Quantized Conductance States in a Pt/HfOx/ITO Memristor. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901055	6.4	18
307	Solar-driven efficient methane catalytic oxidation over epitaxial ZnO/La0.8Sr0.2CoO3 heterojunctions. <i>Applied Catalysis B: Environmental</i> , 2020 , 265, 118469	21.8	19

(2019-2020)

306	Electron beam melted heterogeneously porous microlattices for metallic bone applications: Design and investigations of boundary and edge effects. <i>Additive Manufacturing</i> , 2020 , 36, 101566	6.1	10
305	Low-cost valence-rich copperfronBulfurBxygen porous nanocluster that drives an exceptional energy-saving carbohydrazide oxidization reaction in alkali and near-neutral electrolytes. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 24419-24427	13	1
304	Programmable, UV-Printable Dielectric Elastomers Actuate at Low Voltage without Prestretch and Supporting Frames. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 4042-4053	4	3
303	Ab initio modeling of the energy landscape for screw dislocations in body-centered cubic high-entropy alloys. <i>Npj Computational Materials</i> , 2020 , 6,	10.9	30
302	A Stable Nitrogen-centered Bis(imino)perylene Dimer-based Diradicaloid. <i>Asian Journal of Organic Chemistry</i> , 2020 , 9, 1798-1801	3	O
301	2,6-/1,5-Naphthoquinodimethane bridged porphyrin dimer diradicaloids. <i>Journal of Porphyrins and Phthalocyanines</i> , 2020 , 24, 220-229	1.8	6
300	3D-Printed Grids with Polymeric Photocatalytic System as Flexible Air Filter. <i>Applied Catalysis B: Environmental</i> , 2020 , 262, 118307	21.8	16
299	3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. <i>Energy Storage Materials</i> , 2020 , 24, 336-342	19.4	55
298	High Coercivity and Magnetization in WSe by Codoping Co and Nb. Small, 2020, 16, e1903173	11	21
297	Asymmetric Structure Based Flexible Strain Sensor for Simultaneous Detection of Various Human		22
	Joint Motions. ACS Applied Electronic Materials, 2019 , 1, 1866-1872	4	22
296	Oxygen Vacancy Promoted O2 Activation over Perovskite Oxide for Low-Temperature CO Oxidation. <i>ACS Catalysis</i> , 2019 , 9, 9751-9763	13.1	116
296	Oxygen Vacancy Promoted O2 Activation over Perovskite Oxide for Low-Temperature CO		116
	Oxygen Vacancy Promoted O2 Activation over Perovskite Oxide for Low-Temperature CO Oxidation. <i>ACS Catalysis</i> , 2019 , 9, 9751-9763 Constructing hierarchical carbon framework and quantifying water transfer for novel solar	13.1	116
295	Oxygen Vacancy Promoted O2 Activation over Perovskite Oxide for Low-Temperature CO Oxidation. <i>ACS Catalysis</i> , 2019 , 9, 9751-9763 Constructing hierarchical carbon framework and quantifying water transfer for novel solar evaporation configuration. <i>Carbon</i> , 2019 , 155, 25-33 Controllable Ceramic Green-Body Configuration for Complex Ceramic Architectures with Fine	13.1	116 28
² 95	Oxygen Vacancy Promoted O2 Activation over Perovskite Oxide for Low-Temperature CO Oxidation. <i>ACS Catalysis</i> , 2019 , 9, 9751-9763 Constructing hierarchical carbon framework and quantifying water transfer for novel solar evaporation configuration. <i>Carbon</i> , 2019 , 155, 25-33 Controllable Ceramic Green-Body Configuration for Complex Ceramic Architectures with Fine Features. <i>Advanced Functional Materials</i> , 2019 , 29, 1807082 Metallization of 3D Printed Polymers and Their Application as a Fully Functional Water-Splitting	13.1 10.4 15.6	116 28 20
295 294 293	Oxygen Vacancy Promoted O2 Activation over Perovskite Oxide for Low-Temperature CO Oxidation. <i>ACS Catalysis</i> , 2019 , 9, 9751-9763 Constructing hierarchical carbon framework and quantifying water transfer for novel solar evaporation configuration. <i>Carbon</i> , 2019 , 155, 25-33 Controllable Ceramic Green-Body Configuration for Complex Ceramic Architectures with Fine Features. <i>Advanced Functional Materials</i> , 2019 , 29, 1807082 Metallization of 3D Printed Polymers and Their Application as a Fully Functional Water-Splitting System. <i>Advanced Science</i> , 2019 , 6, 1801670 Effects of TiO2 doping on microstructure and properties of directed laser deposition	13.1 10.4 15.6	116 28 20 32
295 294 293 292	Oxygen Vacancy Promoted O2 Activation over Perovskite Oxide for Low-Temperature CO Oxidation. <i>ACS Catalysis</i> , 2019 , 9, 9751-9763 Constructing hierarchical carbon framework and quantifying water transfer for novel solar evaporation configuration. <i>Carbon</i> , 2019 , 155, 25-33 Controllable Ceramic Green-Body Configuration for Complex Ceramic Architectures with Fine Features. <i>Advanced Functional Materials</i> , 2019 , 29, 1807082 Metallization of 3D Printed Polymers and Their Application as a Fully Functional Water-Splitting System. <i>Advanced Science</i> , 2019 , 6, 1801670 Effects of TiO2 doping on microstructure and properties of directed laser deposition alumina/aluminum titanate composites. <i>Virtual and Physical Prototyping</i> , 2019 , 14, 371-381 Direct measurement of nanostructural change during in situ deformation of a bulk metallic glass.	13.1 10.4 15.6 13.6	116 28 20 32 14

288	Heterogeneously tempered martensitic high strength steel by selective laser melting and its micro-lattice: Processing, microstructure, superior performance and mechanisms. <i>Materials and Design</i> , 2019 , 178, 107881	8.1	33
287	Evidence of Spin Frustration in a Vanadium Diselenide Monolayer Magnet. <i>Advanced Materials</i> , 2019 , 31, e1901185	24	85
286	ART_data_analyzer: Automating parallelized computations to study the evolution of materials. <i>SoftwareX</i> , 2019 , 9, 238-243	2.7	5
285	3D-Printed Anti-Fouling Cellulose Mesh for Highly Efficient Oil/Water Separation Applications. <i>ACS Applied Materials & Discourt Materi</i>	9.5	67
284	Highly effective smoothening of 3D-printed metal structures via overpotential electrochemical polishing. <i>Materials Research Letters</i> , 2019 , 7, 282-289	7.4	15
283	Room-Temperature Magnets Based on 1,3,5-Triazine-Linked Porous Organic Radical Frameworks. <i>CheM</i> , 2019 , 5, 1223-1234	16.2	41
282	Effect of doping SiC particles on cracks and pores of Al2O3\(\mathbb{Z}\)rO2 eutectic ceramics fabricated by directed laser deposition. <i>Journal of Materials Science</i> , 2019 , 54, 9321-9330	4.3	10
281	Chemically Exfoliated VSe Monolayers with Room-Temperature Ferromagnetism. <i>Advanced Materials</i> , 2019 , 31, e1903779	24	131
280	High loading accessible active sites via designable 3D-printed metal architecture towards promoting electrocatalytic performance. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18338-18347	13	15
279	NiFe (sulfur)oxyhydroxide porous nanoclusters/Ni foam composite electrode drives a large-current-density oxygen evolution reaction with an ultra-low overpotential. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18816-18822	13	17
278	Digital light processing 3D printing of graphene/carbonyl iron/polymethyl methacrylate nanocomposites for efficient microwave absorption. <i>Composites Part B: Engineering</i> , 2019 , 179, 107533	10	39
277	Correlation of resistance switching and polarization rotation in copper doped zinc oxide (ZnO:Cu) thin films studied by Scanning Probe Microscopy. <i>Journal of Materiomics</i> , 2019 , 5, 574-582	6.7	2
276	Clustering-induced high magnetization in Co-doped TiO2. Emergent Materials, 2019, 2, 295-301	3.5	18
275	Confinement-Induced Giant Spin-Orbit-Coupled Magnetic Moment of Co Nanoclusters in TiO Films. <i>ACS Applied Materials & Discrete Section</i> , 11, 43781-43788	9.5	3
274	Tuning the polarization rotation behavior in undoped zinc oxide thin films. <i>Journal of Alloys and Compounds</i> , 2019 , 810, 151900	5.7	O
273	Enhanced ferromagnetism in WS2 via defect engineering. <i>Journal of Alloys and Compounds</i> , 2019 , 772, 740-744	5.7	20
272	High-Magnetization Tetragonal Ferrite-Based Films Induced by Carbon and Oxygen Vacancy Pairs. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> , 11, 1049-1056	9.5	4
271	3D-Printed MOF-Derived Hierarchically Porous Frameworks for Practical High-Energy Density Li D 2 Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1806658	15.6	138

(2018-2019)

270	[n]Cyclo-para-biphenylmethine Polyradicaloids: [n]Annulene Analogs and Unusual Valence Tautomerization. <i>CheM</i> , 2019 , 5, 108-121	16.2	13
269	Pre-surface leached cordierite honeycombs for MnxCo3-xO4 nano-sheet array integration with enhanced hydrocarbons combustion. <i>Catalysis Today</i> , 2019 , 320, 196-203	5.3	10
268	Dual-Native Vacancy Activated Basal Plane and Conductivity of MoSe with High-Efficiency Hydrogen Evolution Reaction. <i>Small</i> , 2018 , 14, e1704150	11	78
267	From Open-Shell Singlet Diradicaloid to Closed-Shell Global Antiaromatic Macrocycles. <i>Angewandte Chemie</i> , 2018 , 130, 7284-7288	3.6	13
266	Molecular O Activation over Cu(I)-Mediated C?N Bond for Low-Temperature CO Oxidation. <i>ACS Applied Materials & District Materials & Dis</i>	9.5	16
265	From Open-Shell Singlet Diradicaloid to Closed-Shell Global Antiaromatic Macrocycles. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7166-7170	16.4	26
264	Spatial correlation of elastic heterogeneity tunes the deformation behavior of metallic glasses. <i>Npj Computational Materials</i> , 2018 , 4,	10.9	46
263	Mesoporous Perovskite Nanotube-Array Enhanced Metallic-State Platinum Dispersion for Low Temperature Propane Oxidation. <i>ChemCatChem</i> , 2018 , 10, 2184-2189	5.2	10
262	Stable Nitrogen-Centered Bis(imino)rylene Diradicaloids. <i>Chemistry - A European Journal</i> , 2018 , 24, 494	4- 4.9 51	11
261	In Situ Grown Epitaxial Heterojunction Exhibits High-Performance Electrocatalytic Water Splitting. <i>Advanced Materials</i> , 2018 , 30, e1705516	24	273
260	Boosting catalytic propane oxidation over PGM-free Co3O4 nanocrystal aggregates through chemical leaching: A comparative study with Pt and Pd based catalysts. <i>Applied Catalysis B: Environmental</i> , 2018 , 226, 585-595	21.8	74
259	Macrocyclic Polyradicaloids with Unusual Super-ring Structure and Global Aromaticity. <i>CheM</i> , 2018 , 4, 1586-1595	16.2	79
258	TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. <i>Chemical Society Reviews</i> , 2018 , 47, 4332-4356	58.5	154
257	Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. <i>Nano Energy</i> , 2018 , 48, 73-80	17.1	418
256	Robocasting of dense yttria-stabilized zirconia structures. <i>Journal of Materials Science</i> , 2018 , 53, 247-27	'3 4.3	48
255	Global Aromaticity in Macrocyclic Cyclopenta-Fused Tetraphenanthrenylene Tetraradicaloid and Its Charged Species. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 13052-13056	16.4	35
254	Model of laser energy absorption adjusted to optical measurements with effective use in finite element simulation of selective laser melting. <i>Materials and Design</i> , 2018 , 157, 24-34	8.1	27
253	Toward Two-Dimensional Econjugated Covalent Organic Radical Frameworks. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8007-8011	16.4	94

252	Hierarchical Design of NiOOH@Amorphous Ni-P Bilayer on a 3D Mesh Substrate for High-Efficiency Oxygen Evolution Reaction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 30273-30282	9.5	16
251	Stable Expanded Porphycene-Based Diradicaloid and Tetraradicaloid. <i>Angewandte Chemie</i> , 2018 , 130, 12714-12717	3.6	3
250	Oxygen vacancy enhancement promoting strong green emission through surface modification in ZnO thin film. <i>Applied Surface Science</i> , 2018 , 462, 466-470	6.7	25
249	Stable Expanded Porphycene-Based Diradicaloid and Tetraradicaloid. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 12534-12537	16.4	19
248	Ar2+ Beam Irradiation-Induced Multivancancies in MoSe2 Nanosheet for Enhanced Electrochemical Hydrogen Evolution. <i>ACS Energy Letters</i> , 2018 , 3, 2167-2172	20.1	49
247	Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 8919-8924	11.5	251
246	Hydrogen Evolution Catalyzed by a Molybdenum Sulfide Two-Dimensional Structure with Active Basal Planes. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 22042-22049	9.5	15
245	Intrinsic or Interface Clustering-Induced Ferromagnetism in Fe-Doped InO-Diluted Magnetic Semiconductors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 22372-22380	9.5	19
244	Activation of the MoSe2 basal plane and Se-edge by B doping for enhanced hydrogen evolution. Journal of Materials Chemistry A, 2018 , 6, 510-515	13	79
243	Diazuleno-s-indacene Diradicaloids: Syntheses, Properties, and Local (anti)Aromaticity Shift from Neutral to Dicationic State. <i>Angewandte Chemie</i> , 2018 , 130, 16979-16983	3.6	19
242	Superoctazethrene: An Open-Shell Graphene-like Molecule Possessing Large Diradical Character but Still with Reasonable Stability. <i>Journal of the American Chemical Society</i> , 2018 , 140, 14054-14058	16.4	48
241	Ceramic Robocasting: Recent Achievements, Potential, and Future Developments. <i>Advanced Materials</i> , 2018 , 30, e1802404	24	101
240	Diazuleno-s-indacene Diradicaloids: Syntheses, Properties, and Local (anti)Aromaticity Shift from Neutral to Dicationic State. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16737-16741	16.4	38
239	Control of magnetic anisotropy by orbital hybridization with charge transfer in (La0.67Sr0.33MnO3)n/(SrTiO3)n superlattice. <i>NPG Asia Materials</i> , 2018 , 10, 931-942	10.3	7
238	Chemical variation induced nanoscale spatial heterogeneity in metallic glasses. <i>Materials Research Letters</i> , 2018 , 6, 655-661	7.4	13
237	Molecular Insights into NO-Promoted Sulfate Formation on Model TiO Nanoparticles with Different Exposed Facets. <i>Environmental Science & Exposed Facets</i> . 2018, 52, 14110-14118	10.3	12
236	Making glassy solids ductile at room temperature by imparting flexibility into their amorphous structure. <i>Materials Research Letters</i> , 2018 , 6, 570-583	7.4	11
235	Melts of CrCoNi-based high-entropy alloys: Atomic diffusion and electronic/atomic structure from ab initio simulation. <i>Applied Physics Letters</i> , 2018 , 113, 111902	3.4	17

234	Room Temperature Strong Emission and Excitonic Enhancement in Multiple-Stacked Nano-Porous ZnO Thin Film. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2018 , 215, 1800458	1.6	3
233	Global Aromaticity in Macrocyclic Cyclopenta-Fused Tetraphenanthrenylene Tetraradicaloid and Its Charged Species. <i>Angewandte Chemie</i> , 2018 , 130, 13236-13240	3.6	13
232	Toward Two-Dimensional Econjugated Covalent Organic Radical Frameworks. <i>Angewandte Chemie</i> , 2018 , 130, 8139-8143	3.6	20
231	Curved Etonjugated corannulene dimer diradicaloids. <i>Chemical Science</i> , 2018 , 9, 5100-5105	9.4	17
230	Re doping induced 2H-1T phase transformation and ferromagnetism in MoS2 nanosheets. <i>Applied Physics Letters</i> , 2018 , 113, 013101	3.4	26
229	A Peri-tetracene Diradicaloid: Synthesis and Properties. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9697-9701	16.4	60
228	A Peri-tetracene Diradicaloid: Synthesis and Properties. <i>Angewandte Chemie</i> , 2018 , 130, 9845-9849	3.6	27
227	Binary Controls on Interfacial Magnetism in Manganite Heterostructures. <i>Advanced Functional Materials</i> , 2018 , 28, 1801766	15.6	13
226	Low-field switchable dynamic anisotropy in FeCoN thin film with weak stripe domain. <i>AIP Advances</i> , 2017 , 7, 056003	1.5	
225	Radical and Diradical Formation in Naphthalene Diimides through Simple Chemical Oxidation. <i>ChemPhysChem</i> , 2017 , 18, 591-595	3.2	17
224	Rylene Ribbons with Unusual Diradical Character. <i>CheM</i> , 2017 , 2, 81-92	16.2	82
223	Defects engineering induced room temperature ferromagnetism in transition metal doped MoS 2. <i>Materials and Design</i> , 2017 , 121, 77-84	8.1	81
222	Extrusion printing of a designed three-dimensional YBa2Cu3O7⊠ superconductor with milled precursor powder. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 3382-3389	7.1	11
221	Enhanced oxygen evolution reaction by Co-O-C bonds in rationally designed Co3O4/graphene nanocomposites. <i>Nano Energy</i> , 2017 , 33, 445-452	17.1	102
220	Toward Stable Superbenzoquinone Diradicaloids. <i>Angewandte Chemie</i> , 2017 , 129, 5094-5098	3.6	18
219	Activating and Optimizing Activity of CoS2 for Hydrogen Evolution Reaction through the Synergic Effect of N Dopants and S Vacancies. <i>ACS Energy Letters</i> , 2017 , 2, 1022-1028	20.1	165
218	A Stable N-Annulated Perylene-Bridged Bisphenoxyl Diradicaloid and the Corresponding Boron Trifluoride Complex. <i>Chemistry - A European Journal</i> , 2017 , 23, 9419-9424	4.8	11
217	Computational modeling sheds light on structural evolution in metallic glasses and supercooled liquids. <i>Npj Computational Materials</i> , 2017 , 3,	10.9	51

216	Cyclopenta Ring Fused Bisanthene and Its Charged Species with Open-Shell Singlet Diradical Character and Global Aromaticity/ Anti-Aromaticity. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11415-11419	16.4	44
215	Magnetic Behavior of ZnO Nanorods Doped with Silver (Ag3+) Ions. <i>Journal of Nanoscience and Nanotechnology</i> , 2017 , 17, 5631-5636	1.3	5
214	Ferrite-based soft and hard magnetic structures by extrusion free-forming. RSC Advances, 2017, 7, 2712	!8 j.≱ 713	38 ₁ 6
213	Toward Benzobis(thiadiazole)-based Diradicaloids. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 2177-2182	4.5	16
212	Ambient Stable Radical Cations, Diradicaloid Dimeric Dications, Closed-Shell Dications, and Diradical Dications of Methylthio-Capped Rylenes. <i>Chemistry - A European Journal</i> , 2017 , 23, 7595-7606	4.8	10
211	Resistive switching behavior in copper doped zinc oxide (ZnO:Cu) thin films studied by using scanning probe microscopy techniques. <i>Journal of Alloys and Compounds</i> , 2017 , 709, 535-541	5.7	18
210	Toward Stable Superbenzoquinone Diradicaloids. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5012-5016	16.4	32
209	Phase-transfer induced room temperature ferromagnetic behavior in 1T@2H-MoSe nanosheets. <i>Scientific Reports</i> , 2017 , 7, 45307	4.9	17
208	Activating Basal Planes and S-Terminated Edges of MoS2 toward More Efficient Hydrogen Evolution. <i>Advanced Functional Materials</i> , 2017 , 27, 1604943	15.6	104
207	Dual-Functional N Dopants in Edges and Basal Plane of MoS2 Nanosheets Toward Efficient and Durable Hydrogen Evolution. <i>Advanced Energy Materials</i> , 2017 , 7, 1602086	21.8	215
206	Low-Field Dynamic Magnetic Separation by Self-Fabricated Magnetic Meshes for Efficient Heavy Metal Removal. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 36772-36782	9.5	24
205	A Three-Dimensionally EConjugated Diradical Molecular Cage. <i>Angewandte Chemie</i> , 2017 , 129, 15585-15	5,89	13
204	A Three-Dimensionally EConjugated Diradical Molecular Cage. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 15383-15387	16.4	35
203	Inducing High Coercivity in MoS2 Nanosheets by Transition Element Doping. <i>Chemistry of Materials</i> , 2017 , 29, 9066-9074	9.6	50
202	Nanochannels: A 1D Vanadium Dioxide Nanochannel Constructed via Electric-Field-Induced Ion Transport and its Superior Metallhsulator Transition (Adv. Mater. 39/2017). <i>Advanced Materials</i> , 2017 , 29,	24	1
201	Fluorenyl Based Macrocyclic Polyradicaloids. <i>Journal of the American Chemical Society</i> , 2017 , 139, 13173	3-16.48	3 ₄₄
200	A 1D Vanadium Dioxide Nanochannel Constructed via Electric-Field-Induced Ion Transport and its Superior Metal-Insulator Transition. <i>Advanced Materials</i> , 2017 , 29, 1702162	24	52
199	Role of RKKY torque on domain wall motion in synthetic antiferromagnetic nanowires with opposite spin Hall angles. <i>Scientific Reports</i> , 2017 , 7, 11715	4.9	17

198	Stable Oxindolyl-Based Analogues of Chichibabin's and Mller's Hydrocarbons. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14154-14158	16.4	22
197	Stable Oxindolyl-Based Analogues of Chichibabin's and M l ler's Hydrocarbons. <i>Angewandte Chemie</i> , 2017 , 129, 14342-14346	3.6	8
196	On the question of fractal packing structure in metallic glasses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 8458-8463	11.5	20
195	Copper dopants improved the hydrogen evolution activity of earth-abundant cobalt pyrite catalysts by activating the electrocatalytically inert sulfur sites. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 17601-1	1 7 608	44
194	Probing the magnetic profile of diluted magnetic semiconductors using polarized neutron reflectivity. <i>Scientific Reports</i> , 2017 , 7, 6341	4.9	14
193	Economical Fe-doped Ta2O5 electrocatalyst toward efficient oxygen evolution: a combined experimental and first-principles study. <i>MRS Communications</i> , 2017 , 7, 563-569	2.7	1
192	Conformationally Flexible Bis(9-fluorenylidene)porphyrin Diradicaloids. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13484-13488	16.4	33
191	Conformationally Flexible Bis(9-fluorenylidene)porphyrin Diradicaloids. <i>Angewandte Chemie</i> , 2017 , 129, 13669-13673	3.6	16
190	Correlating the properties of amorphous silicon with its flexibility volume. <i>Physical Review B</i> , 2017 , 95,	3.3	14
189	Three-dimensional printed cellular stainless steel as a high-activity catalytic electrode for oxygen evolution. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 18176-18182	13	45
188	Synthesis, structures and magnetic properties of isoreticular polyrotaxane-type two-dimensional coordination polymers. <i>RSC Advances</i> , 2017 , 7, 45582-45586	3.7	3
187	Cyclopenta Ring Fused Bisanthene and Its Charged Species with Open-Shell Singlet Diradical Character and Global Aromaticity/ Anti-Aromaticity. <i>Angewandte Chemie</i> , 2017 , 129, 11573-11577	3.6	20
186	Plasmon Exciton interaction and screening of exciton in ZnO-based thin film on bulk Pt as analyzed by spectroscopic ellipsometry. <i>Japanese Journal of Applied Physics</i> , 2017 , 56, 01AD06	1.4	10
185	Microwave permeability of stripe patterned FeCoN thin film. <i>Journal of Magnetism and Magnetic Materials</i> , 2017 , 426, 467-472	2.8	9
184	Polarization rotation in copper doped zinc oxide (ZnO:Cu) thin films studied by Piezoresponse Force Microscopy (PFM) techniques. <i>Acta Materialia</i> , 2017 , 123, 394-403	8.4	19
183	Polarization behavior of zinc oxide thin films studied by temperature dependent spectroscopic ellipsometry. <i>Optical Materials Express</i> , 2017 , 7, 3902	2.6	9
182	Low temperature propane oxidation over Co3O4 based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability. <i>Applied Catalysis B: Environmental</i> , 2016 , 180, 150-160	21.8	131
181	Intrinsic Ferromagnetism in the Diluted Magnetic Semiconductor Co:TiO_{2}. <i>Physical Review Letters</i> , 2016 , 117, 227202	7.4	46

180	Supramolecular Isomerism and Polyrotaxane-Based Two-Dimensional Coordination Polymers. Crystal Growth and Design, 2016 , 16, 7278-7285	3.5	23
179	Higher Order Econjugated Polycyclic Hydrocarbons with Open-Shell Singlet Ground State: Nonazethrene versus Nonacene. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10323-30	16.4	89
178	Anomalous structure-property relationships in metallic glasses through pressure-mediated glass formation. <i>Physical Review B</i> , 2016 , 93,	3.3	33
177	Electrochemical reactivity and proton transport mechanisms in nanostructured ceria. <i>Nanotechnology</i> , 2016 , 27, 345401	3.4	7
176	Extended Bis(benzothia)quinodimethanes and Their Dications: From Singlet Diradicaloids to Isoelectronic Structures of Long Acenes. <i>Angewandte Chemie</i> , 2016 , 128, 9462-9466	3.6	15
175	A combinatorial approach to enhance the biocompatibility and heating efficiency of magnetic hyperthermia- Serum Albumin conjugated ferrimagneticmagnetite nanoparticles. <i>MRS Advances</i> , 2016 , 1, 247-254	0.7	1
174	Strong Modification of Excitons and Optical Conductivity for Different Dielectric Environments in ZnO Films. <i>IEEE Photonics Journal</i> , 2016 , 8, 1-9	1.8	19
173	Fully Fused Quinoidal/Aromatic Carbazole Macrocycles with Poly-radical Characters. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7782-90	16.4	63
172	Tailoring structural inhomogeneities in metallic glasses to enable tensile ductility at room temperature. <i>Materials Today</i> , 2016 , 19, 568-579	21.8	89
171	Extremely low frequency alternating magnetic field-triggered and MRI-traced drug delivery by optimized magnetic zeolitic imidazolate framework-90 nanoparticles. <i>Nanoscale</i> , 2016 , 8, 3259-63	7.7	49
170	Structures and properties of transition-metal-doped TiO2 nanorods. <i>Materials Letters</i> , 2016 , 170, 142-1	46 .3	32
169	Size-dependent microwave absorption properties of Fe3O4 nanodiscs. <i>RSC Advances</i> , 2016 , 6, 25444-25	54 48	36
168	Thermoresponsive magnetic ionic liquids: synthesis and temperature switchable magnetic separation. <i>RSC Advances</i> , 2016 , 6, 15731-15734	3.7	10
167	Benzo-thia-fused []thienoacenequinodimethanes with small to moderate diradical characters: the role of pro-aromaticity anti-aromaticity. <i>Chemical Science</i> , 2016 , 7, 3036-3046	9.4	31
166	Octazethrene and Its Isomer with Different Diradical Characters and Chemical Reactivity: The Role of the Bridge Structure. <i>Journal of Organic Chemistry</i> , 2016 , 81, 2911-9	4.2	34
165	Toward Tetraradicaloid: The Effect of Fusion Mode on Radical Character and Chemical Reactivity. Journal of the American Chemical Society, 2016 , 138, 1065-77	16.4	76
164	Synthesis of Ferromagnetic Fe0.6 Mn0.4 O Nanoflowers as a New Class of Magnetic Theranostic Platform for In Vivo T1 -T2 Dual-Mode Magnetic Resonance Imaging and Magnetic Hyperthermia Therapy. <i>Advanced Healthcare Materials</i> , 2016 , 5, 2092-104	10.1	56
163	Super-heptazethrene. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8615-9	16.4	59

162	Super-heptazethrene. Angewandte Chemie, 2016, 128, 8757-8761	3.6	19
161	Universal structural parameter to quantitatively predict metallic glass properties. <i>Nature Communications</i> , 2016 , 7, 13733	17.4	84
160	Kinetically Blocked Stable 5,6:12,13-Dibenzozethrene: A Laterally Extended Zethrene with Enhanced Diradical Character. <i>Organic Letters</i> , 2016 , 18, 2886-9	6.2	23
159	High catalytic activity of oxygen-induced (200) surface of Ta2O5 nanolayer towards durable oxygen evolution reaction. <i>Nano Energy</i> , 2016 , 25, 60-67	17.1	24
158	Stable 3,6-Linked Fluorenyl Radical Oligomers with Intramolecular Antiferromagnetic Coupling and Polyradical Characters. <i>Journal of the American Chemical Society</i> , 2016 , 138, 13048-13058	16.4	35
157	One-dimensional fossil-like Fe2O3@carbon nanostructure: preparation, structural characterization and application as adsorbent for fast and selective recovery of gold ions from aqueous solution. <i>Nanotechnology</i> , 2016 , 27, 415701	3.4	2
156	Metallic Ni3N nanosheets with exposed active surface sites for efficient hydrogen evolution. Journal of Materials Chemistry A, 2016 , 4, 17363-17369	13	177
155	Fabrication of YBa2Cu3O7☑ (YBCO) superconductor bulk structures by extrusion freeforming. <i>Ceramics International</i> , 2016 , 42, 15836-15842	5.1	21
154	Novel room-temperature spin-valve-like magnetoresistance in magnetically coupled nano-column Fe3O4/Ni heterostructure. <i>Nanoscale</i> , 2016 , 8, 15737-43	7.7	8
153	Nanoscaled self-alignment of Fe3O4 nanodiscs in ultrathin rGO films with engineered conductivity for electromagnetic interference shielding. <i>Nanoscale</i> , 2016 , 8, 15989-98	7.7	54
152	Extended Bis(benzothia)quinodimethanes and Their Dications: From Singlet Diradicaloids to Isoelectronic Structures of Long Acenes. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9316-20	16.4	48
151	Push-Pull Type Oligo(N-annulated perylene)quinodimethanes: Chain Length and Solvent-Dependent Ground States and Physical Properties. <i>Journal of the American Chemical Society</i> , 2015 , 137, 8572-83	16.4	76
150	Influence of Angular Dicarboxylate Ligand on the Structures of Single and Double Pillared-Layer Coordination Polymers of Co(II). <i>Crystal Growth and Design</i> , 2015 , 15, 4156-4161	3.5	18
149	Nanoscale magnetization reversal caused by electric field-induced ion migration and redistribution in cobalt ferrite thin films. <i>ACS Nano</i> , 2015 , 9, 4210-8	16.7	48
148	Magnetic-field-assisted synthesis of magnetite nanoparticles via thermal decomposition and their hyperthermia properties. <i>CrystEngComm</i> , 2015 , 17, 3652-3658	3.3	20
147	Achieving a high magnetization in sub-nanostructured magnetite films by spin-flipping of tetrahedral Fe3+ cations. <i>Nano Research</i> , 2015 , 8, 2935-2945	10	19
146	Perpendicular magnetic clusters with configurable domain structures via dipoledipole interactions. <i>Nano Research</i> , 2015 , 8, 3639-3650	10	4
145	Stable zinc-blende ZnO thin films: formation and physical properties. <i>Journal of Materials Science</i> , 2015 , 50, 28-33	4.3	8

144	Deposition of high permeability FeCoN films on mica substrates. <i>Journal of Applied Physics</i> , 2015 , 118, 013902	2.5	7
143	Second-Nearest-Neighbor Correlations from Connection of Atomic Packing Motifs in Metallic Glasses and Liquids. <i>Scientific Reports</i> , 2015 , 5, 17429	4.9	47
142	Strain Engineering of Octahedral Rotations and Physical Properties of SrRuO3 Films. <i>Scientific Reports</i> , 2015 , 5, 10245	4.9	39
141	L10-FePt films fabricated by wet-chemical route. <i>Thin Solid Films</i> , 2015 , 589, 649-654	2.2	1
140	A Facile Chemical Solution-Based Method for Epitaxial Growth of Thick Ferrite Films. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500102	6.4	2
139	Shape-dependent microwave permeability of Fe3O4 nanoparticles: a combined experimental and theoretical study. <i>Nanotechnology</i> , 2015 , 26, 265704	3.4	7
138	Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications. <i>Chinese Physics B</i> , 2015 , 24, 127505	1.2	12
137	Zn vacancy induced ferromagnetism in K doped ZnO. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 11953-1	1 9 58	34
136	Ferromagnetism and Crossover of Positive Magnetoresistance to Negative Magnetoresistance in Na-Doped ZnO. <i>Chemistry of Materials</i> , 2015 , 27, 1285-1291	9.6	31
135	Magnetic vortex nanorings: a new class of hyperthermia agent for highly efficient in vivo regression of tumors. <i>Advanced Materials</i> , 2015 , 27, 1939-44	24	128
134	Orientation Mediated Enhancement on Magnetic Hyperthermia of Fe3O4 Nanodisc. <i>Advanced Functional Materials</i> , 2015 , 25, 812-820	15.6	101
133	Temperature effects on atomic pair distribution functions of melts. <i>Journal of Chemical Physics</i> , 2014 , 140, 064501	3.9	28
132	Synthesis of FeCo nanoparticles from FeO(OH) and Co3O4 using oleic acid as reduction agent. <i>Journal of Nanoparticle Research</i> , 2014 , 16, 1	2.3	7
131	On the origin of elastic strain limit of bulk metallic glasses. <i>Applied Physics Letters</i> , 2014 , 104, 011912	3.4	15
130	Manipulating the surface coating of ultra-small Gd2O3 nanoparticles for improved T1-weighted MR imaging. <i>Biomaterials</i> , 2014 , 35, 1636-42	15.6	96
129	Charge transfer and atomic-level pressure in metallic glasses. <i>Applied Physics Letters</i> , 2014 , 104, 05190	3 3.4	13
128	Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 120-128	7.3	84
127	Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO:Cu films. <i>Applied Physics Letters</i> , 2014 , 104, 081922	3.4	31

para-Ouinodimethane-bridged perylene dimers and pericondensed quaterrylenes: the effect of the 126 fusion mode on the ground states and physical properties. Chemistry - A European Journal, 2014, 20, $114\overset{40}{0}$ -20 $\overset{42}{}$ Soft spots and their structural signature in a metallic glass. Proceedings of the National Academy of 269 125 11.5 Sciences of the United States of America, 2014, 111, 14052-6 Green emission in carbon doped ZnO films. AIP Advances, 2014, 4, 067117 124 1.5 17 Turning on the biradical state of tetracyano-perylene and quaterrylenequinodimethanes by 123 9.4 43 incorporation of additional thiophene rings. Chemical Science, 2014, 5, 3072-3080 Full icosahedra dominate local order in Cu64Zr34 metallic glass and supercooled liquid. Acta 122 8.4 197 Materialia, 2014, 69, 343-354 Concentration-dependent magnetic hyperthermic response of manganese ferrite-loaded ultrasmall 3.6 121 17 graphene oxide nanocomposites. New Journal of Chemistry, 2014, 38, 2312-2319 Coating Engineering of MnFe2O4 Nanoparticles with Superhigh T2 Relaxivity and Efficient Cellular Uptake for Highly Sensitive Magnetic Resonance Imaging. Advanced Materials Interfaces, **2014**, 1, 1300069 120 34 Ferromagnetic ordering in Mn-doped ZnO nanoparticles. Nanoscale Research Letters, 2014, 9, 625 119 51 Large-Scale Synthesis of Large-Sized Monodispersed Iron Oxide Nanoeggs. Applied Mechanics and 118 0.3 Materials, **2014**, 692, 206-209 XPS study of cobalt doped TiO2 films prepared by pulsed laser deposition. Surface and Interface 1.5 117 Analysis, **2014**, 46, 1043-1046 Tetracyanoquaterrylene and tetracyanohexarylenequinodimethanes with tunable ground states 88 116 16.4 and strong near-infrared absorption. Angewandte Chemie - International Edition, 2013, 52, 8561-5 Local Topology vs. Atomic-Level Stresses as a Measure of Disorder: Correlating Structural 61 7.4 Indicators for Metallic Glasses. Materials Research Letters, 2013, 1, 3-12 Magnetic and optical studies of hydrogenated Cu-doped ZnO film. Journal of the Korean Physical 0.6 114 1 Society, 2013, 62, 1738-1743 The structure, magnetic and transport properties of Fe3O4 thin films on different substrates by 0.6 113 9 pulsed laser deposition. Journal of the Korean Physical Society, 2013, 62, 2228-2232 Dibenzoheptazethrene isomers with different biradical characters: an exercise of Clar's aromatic 16.4 112 147 sextet rule in singlet biradicaloids. Journal of the American Chemical Society, 2013, 135, 18229-36 Mesoporous carbon decorated graphene as an efficient electrode material for supercapacitors. 111 13 51 Journal of Materials Chemistry A, 2013, 1, 7469 Quantitative measure of local solidity/liquidity in metallic glasses. Acta Materialia, 2013, 61, 4474-4480 8.4 110 23 Large-scale synthesis of high-content Fe nanotubes/nanorings with high magnetization by H2 6 109 5.1 reduction process. Materials Research Bulletin, 2013, 48, 5003-5007

108	Synthesis of nonstoichiometric zinc ferrite nanoparticles with extraordinary room temperature magnetism and their diverse applications. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 2875	7.1	94
107	Charge-transfer-enhanced prism-type local order in amorphous Mg65Cu25Y10: Short-to-medium-range structural evolution underlying liquid fragility and heat capacity. <i>Acta</i> <i>Materialia</i> , 2013 , 61, 3130-3140	8.4	45
106	Controllable synthesis of ZnO nanoparticles with high intensity visible photoemission and investigation of its mechanism. <i>Nanotechnology</i> , 2013 , 24, 175702	3.4	24
105	Direct observation of lithium-ion transport under an electrical field in LixCoO2 nanograins. <i>Scientific Reports</i> , 2013 , 3, 1084	4.9	68
104	Pushing extended p-quinodimethanes to the limit: stable tetracyano-oligo(N-annulated perylene)quinodimethanes with tunable ground states. <i>Journal of the American Chemical Society</i> , 2013 , 135, 6363-71	16.4	150
103	Superparamagnetic Nanostructures for Off-Resonance Magnetic Resonance Spectroscopic Imaging. <i>Advanced Functional Materials</i> , 2013 , 23, 496-505	15.6	16
102	Tetracyanoquaterrylene and Tetracyanohexarylenequinodimethanes with Tunable Ground States and Strong Near-Infrared Absorption. <i>Angewandte Chemie</i> , 2013 , 125, 8723-8727	3.6	29
101	Synthesis of Fe2O3 Templates via Hydrothermal Route and Fe3O4 Particles Through Subsequent Chemical Reduction. <i>Science of Advanced Materials</i> , 2013 , 5, 1199-1207	2.3	9
100	Kinetically blocked stable heptazethrene and octazethrene: closed-shell or open-shell in the ground state?. <i>Journal of the American Chemical Society</i> , 2012 , 134, 14913-22	16.4	213
99	Bipolar charge storage characteristics in copper and cobalt co-doped zinc oxide (ZnO) thin film. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2012 , 4, 5276-80	9.5	18
98	Strain-Induced ZnO Spinterfaces. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 610-617	3.8	14
97	Stable tetrabenzo-Chichibabin's hydrocarbons: tunable ground state and unusual transition between their closed-shell and open-shell resonance forms. <i>Journal of the American Chemical Society</i> , 2012 , 134, 14513-25	16.4	176
96	Origin of long-range ferromagnetic ordering in metal-organic frameworks with antiferromagnetic dimeric-Cu(II) building units. <i>Journal of the American Chemical Society</i> , 2012 , 134, 17286-90	16.4	72
95	Sample size matters for Al88Fe7Gd5 metallic glass: Smaller is stronger. <i>Acta Materialia</i> , 2012 , 60, 5370-	58.749	93
94	Microwave property of micron and sub-micron Fe90Al10 flakes fabricated via ball milling and jet milling routes. <i>Journal of Alloys and Compounds</i> , 2012 , 528, 58-62	5.7	13
93	Multimodality treatment of cancer with herceptin conjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles of biodegradable polymers. <i>Biomaterials</i> , 2012 , 33, 7519-29	15.6	99
92	Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications. <i>Small</i> , 2012 , 8, 3620-30	11	104
91	Robust room-temperature ferromagnetism with giant anisotropy in Nd-doped ZnO nanowire arrays. <i>Nano Letters</i> , 2012 , 12, 3994-4000	11.5	146

90	Succinic anhydride functionalized alkenoic ligands: a facile route to synthesize water dispersible nanocrystals. <i>Journal of Materials Chemistry</i> , 2012 , 22, 13832		12
89	Significant deterioration of energy products in exchange-coupled composite magnets. <i>Journal of Applied Physics</i> , 2012 , 112, 013918	2.5	12
88	Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8235		175
87	Short-range structural signature of excess specific heat and fragility of metallic-glass-forming supercooled liquids. <i>Physical Review B</i> , 2012 , 85,	3.3	76
86	Characterization of L10-FePt/Fe based exchange coupled composite bit pattern media. <i>Journal of Applied Physics</i> , 2012 , 111, 07B914	2.5	10
85	Angular dependence and temperature effect on switching field distribution of Co/Pd based bit patterned media. <i>Journal of Applied Physics</i> , 2012 , 111, 07B917	2.5	3
84	Correlating local structure with inhomogeneous elastic deformation in a metallic glass. <i>Applied Physics Letters</i> , 2012 , 101, 121917	3.4	42
83	One-dimensional stringlike cooperative migration of lithium ions in an ultrafast ionic conductor. <i>Applied Physics Letters</i> , 2012 , 101, 031901	3.4	60
82	Stable vortex magnetite nanorings colloid: Micromagnetic simulation and experimental demonstration. <i>Journal of Applied Physics</i> , 2012 , 111, 044303	2.5	34
81	Combination Control, Nanomagnetism and Biomedical Applications of Inorganic Multicomponent Hybrid Nanomaterials 2012 , 421-454		
80	Room temperature ferromagnetism in N-doped rutile TiO2 films. <i>Journal of Applied Physics</i> , 2011 , 109, 07C302	2.5	44
79	Defect-induced magnetism in undoped wide band gap oxides: Zinc vacancies in ZnO as an example. <i>AIP Advances</i> , 2011 , 1, 022152	1.5	166
78	Selected peer-reviewed articles from the International Conference on Materials for Advanced Technologies (ICMAT 2009) Symposium E: Nanostructured Magnetic Materials and Their Applications. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 2549-50	1.3	
77	Room temperature ferromagnetism and hopping conduction in Pt NCs/Al2O3 films. <i>Journal of Applied Physics</i> , 2011 , 109, 07C321	2.5	
76	Novel synthesis of superparamagnetic magnetite nanoclusters for biomedical applications. <i>Journal of Materials Chemistry</i> , 2011 , 21, 14717		66
75	Electrically Adjustable, Super Adhesive Force of a Superhydrophobic Aligned MnO2 Nanotube Membrane. <i>Advanced Functional Materials</i> , 2011 , 21, 184-190	15.6	79
74	Mutual ferromagnetic-ferroelectric coupling in multiferroic copper-doped ZnO. <i>Advanced Materials</i> , 2011 , 23, 1635-40	24	85
73	Vitamin E (D-alpha-tocopheryl-co-poly(ethylene glycol) 1000 succinate) micelles-superparamagnetic iron oxide nanoparticles for enhanced thermotherapy and MRI. <i>Biomaterials</i> , 2011 , 32, 5663-72	15.6	87

72	Surface ferromagnetism in hydrogenated-ZnO film. <i>Applied Physics Letters</i> , 2011 , 98, 152505	3.4	39
71	Accurate calculation of the nucleation field and hysteresis loops in hard-soft multilayers. <i>Journal of Applied Physics</i> , 2011 , 109, 07D340	2.5	9
70	Calculation of individual bit island switching field distribution in perpendicular magnetic bit patterned media. <i>Journal of Applied Physics</i> , 2011 , 109, 07B758	2.5	11
69	SINGLE STEP SYNTHESIS OF HYDROPHOBIC AND HYDROPHILIC NANOPARTICLES VIA THERMAL DECOMPOSITION. <i>International Journal of Nanoscience</i> , 2011 , 10, 943-947	0.6	3
68	Correlated d0 ferromagnetism and photoluminescence in undoped ZnO nanowires. <i>Applied Physics Letters</i> , 2010 , 96, 112511	3.4	215
67	Stable bipolar surface potential behavior of copper-doped zinc oxide films studied by Kelvin probe force microscopy. <i>Applied Physics Letters</i> , 2010 , 97, 232103	3.4	19
66	Bound magnetic polarons induced ferromagnetism in transition-metal-doped oxide nanostructures 2010 ,		1
65	Polyol-based synthesis of hydrophilic magnetite nanoparticles. <i>Journal of Applied Physics</i> , 2010 , 107, 09B310	2.5	23
64	Facile synthesis of water-stable magnetite nanoparticles for clinical MRI and magnetic hyperthermia applications. <i>Nanomedicine</i> , 2010 , 5, 1571-84	5.6	53
63	Calculation of complex permeability of magnetic composite materials using ferromagnetic resonance model. <i>Journal of Applied Physics</i> , 2010 , 107, 083906	2.5	17
62	Synthesis of Magnetite Nanooctahedra and Their Magnetic Field-Induced Two-/Three-Dimensional Superstructure. <i>Chemistry of Materials</i> , 2010 , 22, 3183-3191	9.6	119
61	Synthesis of ZnO Nanoparticles with Tunable Emission Colors and Their Cell Labeling Applications. <i>Chemistry of Materials</i> , 2010 , 22, 3383-3388	9.6	183
60	Quantum dot capped magnetite nanorings as high performance nanoprobe for multiphoton fluorescence and magnetic resonance imaging. <i>Journal of the American Chemical Society</i> , 2010 , 132, 148	đ\$:4 1	121
59	Synthesis of ZnO-Pt nanoflowers and their photocatalytic applications. <i>Nanotechnology</i> , 2010 , 21, 1856	06.4	82
58	A facile green approach for synthesizing monodisperse magnetite nanoparticles. <i>Journal of Materials Research</i> , 2010 , 25, 810-813	2.5	7
57	Structural and magnetic studies of Cu-doped ZnO films synthesized via a hydrothermal route. Journal of Materials Chemistry, 2010 , 20, 5756		20
56	Thiol-capped ZnO nanowire/nanotube arrays with tunable magnetic properties at room temperature. <i>ACS Nano</i> , 2010 , 4, 495-505	16.7	69
55	An algorithm to extract effective magnetic parameters of thin film with in-plane uniaxial magnetic anisotropy. <i>Journal of Applied Physics</i> , 2010 , 107, 09C507	2.5	1

(2009-2010)

54	Growth of highly textured manganese zinc ferrite films on glass substrates. <i>Journal of Applied Physics</i> , 2010 , 107, 09A514	2.5	9
53	The use of microgel iron oxide nanoparticles in studies of magnetic resonance relaxation and endothelial progenitor cell labelling. <i>Biomaterials</i> , 2010 , 31, 3296-306	15.6	44
52	Room Temperature Ferromagnetism in \$({hbox {Zn}}_{1-{rm x}},{hbox {Mg}}_{rm x}){hbox {O}}\$ Film. <i>IEEE Transactions on Magnetics</i> , 2010 , 46, 1338-1341	2	2
51	SmCo \$_{5}\$ With Perpendicular Anisotropy Induced by a (211) Textured Ni\$_{4}\$ W Underlayer. <i>IEEE Transactions on Magnetics</i> , 2010 , 46, 2082-2085	2	2
50	Switching Probability Distribution of Bit Islands in Bit Patterned Media. <i>IEEE Transactions on Magnetics</i> , 2010 , 46, 1990-1993	2	9
49	Ag/Au-decorated Fe3O4/SiO2 composite nanospheres for catalytic applications. <i>Acta Materialia</i> , 2010 , 58, 3825-3831	8.4	25
48	Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped In2O3D nanostructures. <i>Physical Review B</i> , 2009 , 79,	3.3	145
47	ONE-POT SYNTHESIS OF HYDROPHILIC AND HYDROPHOBIC FERROFLUID. <i>International Journal of Nanoscience</i> , 2009 , 08, 65-69	0.6	5
46	Seed layer effect on texture and magnetic properties of SmCo5 thin films. <i>Journal of Applied Physics</i> , 2009 , 105, 07A743	2.5	9
45	Room temperature ferromagnetism of ZnO nanocrystals in amorphous ZnOAl2O3 matrix. <i>Applied Physics Letters</i> , 2009 , 95, 072501	3.4	19
44	Microgel iron oxide nanoparticles for tracking human fetal mesenchymal stem cells through magnetic resonance imaging. <i>Stem Cells</i> , 2009 , 27, 1921-31	5.8	64
43	Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. <i>Journal of Magnetism and Magnetic Materials</i> , 2009 , 321, 1256-1259	2.8	99
42	Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (III) acetylacetonate in tri(ethylene glycol). <i>Journal of Magnetism and Magnetic Materials</i> , 2009 , 321, 3093-30	0 3 8	119
41	Mechanism of room temperature ferromagnetism in ZnO doped with Al. <i>Journal of Applied Physics</i> , 2009 , 105, 07C503	2.5	25
40	Engineering Magnetic Properties of Ni Nanoparticles by Non-Magnetic Cores. <i>Chemistry of Materials</i> , 2009 , 21, 5222-5228	9.6	57
39	A facile one-step route to synthesize cage-like silica hollow spheres loaded with superparamagnetic iron oxide nanoparticles in their shells. <i>Chemical Communications</i> , 2009 , 938-40	5.8	39
38	Macroporous Silica Hollow Microspheres as Nanoparticle Collectors. <i>Chemistry of Materials</i> , 2009 , 21, 3629-3637	9.6	77
37	THE STRUCTURE AND MAGNETIC PROPERTIES OF METAL AND ALLOY NANOWIRES VIA AAO TEMPLATE. International Journal of Nanoscience, 2009 , 08, 75-80	0.6	_

36	Enhancement of room temperature ferromagnetism in C-doped ZnO films by nitrogen codoping. Journal of Applied Physics, 2009 , 105, 07C513	2.5	39
35	A new family of biocompatible and stable magnetic nanoparticles: silica cross-linked pluronic F127 micelles loaded with iron oxides. <i>New Journal of Chemistry</i> , 2009 , 33, 88-92	3.6	39
34	Single-crystalline MFe(2)O(4) nanotubes/nanorings synthesized by thermal transformation process for biological applications. <i>ACS Nano</i> , 2009 , 3, 2798-808	16.7	188
33	SYNTHESIS OF MAGNETITE NANOPARTICLES BY THERMAL DECOMPOSITION: TIME, TEMPERATURE, SURFACTANT AND SOLVENT EFFECTS. <i>Functional Materials Letters</i> , 2008 , 01, 189-193	1.2	43
32	Monodisperse silica nanoparticles encapsulating upconversion fluorescent and superparamagnetic nanocrystals. <i>Chemical Communications</i> , 2008 , 694-6	5.8	152
31	Morphological control of synthesis and anomalous magnetic properties of 3-D branched Pt nanoparticles. <i>Langmuir</i> , 2008 , 24, 375-8	4	72
30	The structure and magnetic properties of NiO with different sizes 2008,		2
29	Engineering inorganic hybrid nanoparticles: tuning combination fashions of gold, platinum, and iron oxide. <i>Langmuir</i> , 2008 , 24, 13197-202	4	18
28	Superparamagnetic Silica Composite Nanospheres (SSCNs) with Ultrahigh Loading of Iron Oxide Nanoparticles via an Oil-in-DEG Microemulsion Route. <i>Chemistry of Materials</i> , 2008 , 20, 6292-6294	9.6	24
27	Aging Time Effect on the Formation of Alumina Nanowires on AAO Templates. <i>Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry</i> , 2008 , 38, 469-474		5
26	Synthesis of calcium carbonate capsules in water-in-oil-in-water double emulsions. <i>Journal of Materials Research</i> , 2008 , 23, 140-149	2.5	7
25	Fabrication and magnetic properties of metal nanowires via AAO templates 2008,		1
24	Inducing ferromagnetism in ZnO through doping of nonmagnetic elements. <i>Applied Physics Letters</i> , 2008 , 93, 042514	3.4	37
23	Room temperature ferromagnetism at self-assembled monolayer modified Ag nanocluster InO nanowire interface. <i>Applied Physics Letters</i> , 2008 , 93, 193111	3.4	16
22	Highly textured SmCo5 (001) thin film with high coercivity. <i>Journal of Applied Physics</i> , 2008 , 104, 09390	5 2.5	12
21	High-coercivity SmCo5 thin films deposited on glass substrates. <i>Journal of Applied Physics</i> , 2008 , 103, 113908	2.5	14
20	Comparative Study of Room-Temperature Ferromagnetism in Cu-Doped ZnO Nanowires Enhanced by Structural Inhomogeneity. <i>Advanced Materials</i> , 2008 , 20, 3521-3527	24	200
19	Double-layer silica core-shell nanospheres with superparamagnetic and fluorescent functionalities. <i>Chemical Physics Letters</i> , 2008 , 461, 114-117	2.5	35

18	Magnetic molybdenum disulfide nanosheet films. <i>Nano Letters</i> , 2007 , 7, 2370-6	11.5	220
17	FePt Patterned Media Fabricated by Deep UV Lithography Followed by Sputtering or PLD. <i>IEEE Transactions on Magnetics</i> , 2007 , 43, 2157-2159	2	7
16	Effect of Sputtered Seed Layer on Electrodeposited NiFe/Cu Composite Wires. <i>IEEE Transactions on Magnetics</i> , 2007 , 43, 2983-2985	2	5
15	Size-dependent magnetism and spin-glass behavior of amorphous NiO bulk, clusters, and nanocrystals: Experiments and first-principles calculations. <i>Physical Review B</i> , 2007 , 76,	3.3	83
14	High coercivity in nanostructured Co-ferrite thin films. <i>Bulletin of Materials Science</i> , 2006 , 29, 573-580	1.7	13
13	Microstructural evolution and its influence on the magnetic properties of CoFe2O4 powders during mechanical milling. <i>Physical Review B</i> , 2006 , 74,	3.3	90
12	Synthesis, Structure, and Magnetic Properties of [Li(H2O)M(N2H3CO2)3]D.5H2O (M = Co,Ni) as Single Precursors to LiMO2Battery Materials. <i>Chemistry of Materials</i> , 2006 , 18, 1587-1594	9.6	58
11	Syntheses, structures and properties of copper(II) complexes containing N-(2-hydroxybenzyl)-amino amide ligands. <i>Inorganica Chimica Acta</i> , 2006 , 359, 3481-3490	2.7	39
10	Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 3094-8	3.4	231
9	High coercivity Co-ferrite thin films on SiO/sub 2/ (100) substrate prepared by sputtering and PLD. <i>IEEE Transactions on Magnetics</i> , 2005 , 41, 3904-3906	2	11
8	High coercivity FePt thin films with Ag intermediate Layers deposited at 400/spl deg/C. <i>IEEE Transactions on Magnetics</i> , 2005 , 41, 3337-3339	2	6
7	Structure and magnetic properties of a neutral dimeric copper (II) complex of N-(2-hydroxybenzyl)glycinamide ligand. <i>Journal of Applied Physics</i> , 2003 , 93, 7819-7821	2.5	12
6	Dispersing and coating of transition metals Co, Fe and Ni on carbon materials. <i>Chemical Physics Letters</i> , 2002 , 362, 135-143	2.5	27
5	Copper complex with a magnetic ordering temperature above 400 K. <i>Applied Physics Letters</i> , 2001 , 78, 3502-3504	3.4	16
4	Catalytic growth of carbon nanoballs with and without cobalt encapsulation. <i>Chemical Physics Letters</i> , 2000 , 330, 41-47	2.5	76
3	Flash temperature induced magnetic degradation in high density magnetic recording. <i>Journal of Applied Physics</i> , 2000 , 87, 6158-6160	2.5	10
2	Influence of different substrates on potential magnetic degradation during slider-disk impact. <i>IEEE Transactions on Magnetics</i> , 2000 , 36, 2686-2688	2	12
1	3D Printing of Next-generation Electrochemical Energy Storage Devices: from Multiscale to Multimaterial. <i>Energy and Environmental Materials</i> ,	13	4