Yi Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4354985/publications.pdf

Version: 2024-02-01

	2.627	172457	144013
88	3,607	29	57
papers	citations	h-index	g-index
89	89	89	4958
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sorption of pharmaceuticals and personal care products (PPCPs) from water and wastewater by carbonaceous materials: A review. Critical Reviews in Environmental Science and Technology, 2022, 52, 727-766.	12.8	37
2	Highly efficient synergistic biocatalysis driven by stably loaded enzymes within hierarchically porous iron/cobalt metal–organic framework ⟨i⟩via⟨/i⟩ biomimetic mineralization. Journal of Materials Chemistry B, 2022, 10, 1553-1560.	5.8	15
3	Glutathione functionalized magnetic covalent organic frameworks with dual-hydrophilicity for highly efficient and selective enrichment of glycopeptides. Journal of Chromatography A, 2022, 1667, 462869.	3.7	13
4	Development of a human insulin certified reference material with SI-traceable purity. Analytical and Bioanalytical Chemistry, 2022, 414, 3443-3457.	3.7	4
5	Room temperature fabrication of magnetic covalent organic frameworks for analyzing sulfonamide residues in animalâ€derived foods. Journal of Separation Science, 2022, 45, 1514-1524.	2.5	11
6	Boosting the activity of enzymes in metal-organic frameworks by a one-stone-two-bird enzymatic surface functionalization strategy. Applied Surface Science, 2022, 586, 152815.	6.1	16
7	Insertion of Hemin into Metal–Organic Frameworks: Mimicking Natural Peroxidase Microenvironment for the Rapid Ultrasensitive Detection of Uranium. Analytical Chemistry, 2022, 94, 6833-6841.	6.5	9
8	Template-Free In Situ Encapsulation of Enzymes in Hollow Covalent Organic Framework Capsules for the Electrochemical Analysis of Biomarkers. ACS Applied Materials & Electrochemical Analysis	8.0	34
9	Quantification of a volatile deuterated compound by the differential scanning calorimetry combined with quantitative nuclear magnetic resonance and its verification by the mass balance method combined with gas chromatography-mass spectrometry. Talanta, 2022, 246, 123538.	5.5	2
10	Oligonucleotide-Functionalized Enzymes Chemisorbing on Magnetic Layered Double Hydroxides: A Multimodal Catalytic Platform with Boosted Activity for Ultrasensitive Glucose Detection. ACS Applied Materials & Detection.	8.0	18
11	An approach based on consecutive high-speed counter-current chromatography for preparation of an active compound rutin from <i>Apocynum venetum</i> L. Journal of Liquid Chromatography and Related Technologies, 2021, 44, 395-402.	1.0	4
12	Fabrication of magnetic dual-hydrophilic metal organic framework for highly efficient glycopeptide enrichment. Analytical and Bioanalytical Chemistry, 2021, 413, 5267-5278.	3.7	12
13	NiCo2S4 microflowers as peroxidase mimic: A multi-functional platform for colorimetric detection of glucose and evaluation of antioxidant behavior. Talanta, 2021, 230, 122337.	5.5	18
14	Janus DNA bridges metal-organic frameworks and graphene oxide for convenient and efficient multienzyme co-immobilization with boosted activity. Applied Surface Science, 2021, 570, 151242.	6.1	10
15	Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: A review. Critical Reviews in Environmental Science and Technology, 2020, 50, 549-611.	12.8	143
16	Comparative study on protein quantitation by digital PCR with G2-EPSPS as an example. Microchemical Journal, 2020, 157, 104954.	4.5	2
17	Oriented immobilization of enzyme–DNA conjugates on magnetic Janus particles for constructing a multicompartment multienzyme system with high activity and stability. Journal of Materials Chemistry B, 2020, 8, 8467-8475.	5.8	9
18	Purity determination of pyributicarb by internal standard correction–high-performance liquid chromatography–quantitative nuclear magnetic resonance. Analytical and Bioanalytical Chemistry, 2020, 412, 6983-6993.	3.7	5

#	Article	lF	CITATIONS
19	Boronic acid-decorated metal-organic frameworks modified via a mixed-ligand strategy for the selective enrichment of cis-diol containing nucleosides. Analytica Chimica Acta, 2020, 1106, 42-51.	5.4	27
20	Exquisitely designed magnetic DNA nanocompartment for enzyme immobilization with adjustable catalytic activity and improved enzymatic assay performance. Chemical Engineering Journal, 2020, 390, 124488.	12.7	21
21	Comparative study on quantitation of human myoglobin by both isotope dilution mass spectrometry and surface plasmon resonance based on calibration-free analysis. Analytical and Bioanalytical Chemistry, 2020, 412, 2777-2784.	3.7	4
22	Co ₂ V ₂ O ₇ Particles with Intrinsic Multienzyme Mimetic Activities as an Effective Bioplatform for Ultrasensitive Fluorometric and Colorimetric Biosensing. ACS Applied Bio Materials, 2020, 3, 1469-1480.	4.6	20
23	Metal–Organic Framework in Situ Post-Encapsulating DNA–Enzyme Composites on a Magnetic Carrier with High Stability and Reusability. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7510-7517.	8.0	51
24	Controllable and highâ€performance immobilized enzyme reactor: DNAâ€directed immobilization of multienzyme in polyamidoamine dendrimerâ€functionalized capillaries. Electrophoresis, 2020, 41, 335-344.	2.4	11
25	Poly (Ionic Liquids) Functionalized Magnetic Nanoparticles as Efficient Adsorbent for Determination of Pyrethroids from Environmental Water Samples by GCâ€MS. ChemistrySelect, 2020, 5, 91-96.	1.5	11
26	Construction of multiple enzyme metal–organic frameworks biocatalyst via DNA scaffold: A promising strategy for enzyme encapsulation. Chemical Engineering Journal, 2019, 363, 174-182.	12.7	69
27	Self-assembly of a magnetic DNA hydrogel as a new biomaterial for enzyme encapsulation with enhanced activity and stability. Chemical Communications, 2019, 55, 2449-2452.	4.1	40
28	DNA-Directed Immobilized Enzymes on Recoverable Magnetic Nanoparticles Shielded in Nucleotide Coordinated Polymers. Industrial & Engineering Chemistry Research, 2019, 58, 8585-8596.	3.7	15
29	Production of bioplastic through food waste valorization. Environment International, 2019, 127, 625-644.	10.0	328
30	Application of magnetized MOF \hat{a} =74 to phthalate esters extraction from Chinese liquor. Journal of Separation Science, 2019, 42, 1600-1609.	2.5	18
31	Highly Effective Removal of Pharmaceutical Compounds from Aqueous Solution by Magnetic Zr-Based MOFs Composites. Industrial & Engineering Chemistry Research, 2019, 58, 3876-3884.	3.7	58
32	Fluoride capped V ₆ O ₁₃ â€"reduced graphene oxide nanocomposites: high activity oxidase mimetics and mechanism investigation. New Journal of Chemistry, 2019, 43, 19053-19062.	2.8	15
33	DNA-directed enzyme immobilization on Fe3O4 modified with nitrogen-doped graphene quantum dots as a highly efficient and stable multi-catalyst system. Journal of Materials Science, 2019, 54, 2535-2551.	3.7	21
34	High performance liquid chromatography - Quantitative nuclear magnetic resonance - High performance liquid chromatography for purity measurement of human insulin. Journal of Liquid Chromatography and Related Technologies, 2018, 41, 170-179.	1.0	3
35	Modification of polydopamine-coated Fe3O4 nanoparticles with multi-walled carbon nanotubes for magnetic-1 ¹ /4-dispersive solid-phase extraction of antiepileptic drugs in biological matrices. Analytical and Bioanalytical Chemistry, 2018, 410, 3779-3788.	3.7	31
36	Attachment of enzymes to hydrophilic magnetic nanoparticles through DNA-directed immobilization with enhanced stability and catalytic activity. New Journal of Chemistry, 2018, 42, 8458-8468.	2.8	20

#	Article	IF	CITATIONS
37	DNA-directed trypsin immobilization on a polyamidoamine dendrimer-modified capillary to form a renewable immobilized enzyme microreactor. International Journal of Biological Macromolecules, 2018, 113, 38-44.	7.5	21
38	Preparation of ironâ€based MILâ€101 functionalized polydopamine@Fe ₃ O ₄ magnetic composites for extracting sulfonylurea herbicides from environmental water and vegetable samples. Journal of Separation Science, 2018, 41, 2046-2055.	2.5	40
39	Intrinsic Triple-Enzyme Mimetic Activity of V ₆ O ₁₃ Nanotextiles: Mechanism Investigation and Colorimetric and Fluorescent Detections. Industrial & Engineering Chemistry Research, 2018, 57, 2416-2425.	3.7	51
40	Self-sacrificial template synthesis of mixed-valence-state cobalt nanomaterials with high catalytic activities for colorimetric detection of glutathione. Sensors and Actuators B: Chemical, 2018, 254, 329-336.	7.8	25
41	SI-traceable calibration-free analysis for the active concentration of G2-EPSPS protein using surface plasmon resonance. Talanta, 2018, 178, 78-84.	5.5	6
42	Enhanced reusability and activity: DNA directed immobilization of enzyme on polydopamine modified magnetic nanoparticles. Biochemical Engineering Journal, 2018, 137, 108-115.	3.6	16
43	Multifunctional magnetic particles for effective suppression of non-specific adsorption and coimmobilization of multiple enzymes by DNA directed immobilization. Journal of Materials Chemistry B, 2018, 6, 5718-5728.	5.8	26
44	Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Science of the Total Environment, 2017, 596-597, 303-320.	8.0	1,131
45	Based on DNA Strand Displacement and Functionalized Magnetic Nanoparticles: A Promising Strategy for Enzyme Immobilization. Industrial & Engineering Chemistry Research, 2017, 56, 5127-5137.	3.7	22
46	Efficient immobilization of enzymes onto magnetic nanoparticles by DNA strand displacement: a stable and high-performance biocatalyst. New Journal of Chemistry, 2017, 41, 6089-6097.	2.8	22
47	Selfâ€assembled magnetic nanoparticle supported zeolitic imidazolate frameworkâ€8: An efficient adsorbent for the enrichment of triazine herbicides from fruit, vegetables, and water. Journal of Separation Science, 2017, 40, 909-918.	2.5	35
48	High Activity and Convenient Ratio Control: DNA-Directed Coimmobilization of Multiple Enzymes on Multifunctionalized Magnetic Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 37254-37263.	8.0	52
49	Fabrication of CeO2/rGO nanocomposites with oxidase-like activity and their application in colorimetric sensing of ascorbic acid. Chemical Research in Chinese Universities, 2017, 33, 540-545.	2.6	14
50	Co ₃ O ₄ /Reduced Graphene Oxide Nanocomposites as Effective Phosphotriesterase Mimetics for Degradation and Detection of Paraoxon. Industrial & Description of Paraox	3.7	27
51	Preparation of polyclonal antibody and development of a biotin-streptavidin-based ELISA method for detecting kanamycin in milk and honey. Chemical Research in Chinese Universities, 2017, 33, 876-881.	2.6	15
52	A self-directed and reconstructible immobilization strategy: DNA directed immobilization of alkaline phosphatase for enzyme inhibition assays. RSC Advances, 2016, 6, 36849-36856.	3.6	13
53	A universal SI-traceable isotope dilution mass spectrometry method for protein quantitation in a matrix by tandem mass tag technology. Analytical and Bioanalytical Chemistry, 2016, 408, 3485-3493.	3.7	9
54	DNA directed immobilization enzyme on polyamidoamine tethered magnetic composites with high reusability and stability. Journal of Materials Chemistry B, 2016, 4, 5873-5882.	5.8	27

#	Article	lF	CITATIONS
55	Triple-enzyme mimetic activity of Co ₃ O ₄ nanotubes and their applications in colorimetric sensing of glutathione. New Journal of Chemistry, 2016, 40, 10056-10063.	2.8	48
56	Grafting I -valine on polyamidoamine dendrimer-modified magnetic microspheres for enantioselective adsorption of dansyl amino acids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490, 241-249.	4.7	17
57	Preparation of novel ionic-liquid-modified magnetic nanoparticles by a microwave-assisted method for sulfonylurea herbicides extraction. Journal of Separation Science, 2015, 38, 3936-3944.	2.5	17
58	Microwave-assisted synthesis of poly(ionic liquid)-coated magnetic nanoparticles for the extraction of sulfonylurea herbicides from soil for HPLC. Analytical Methods, 2015, 7, 3246-3252.	2.7	26
59	Facile one-pot synthesis of \hat{l}^2 -cyclodextrin-polymer-modified Fe ₃ O ₄ microspheres for stereoselective absorption of amino acid compounds. Analytical Methods, 2015, 7, 2754-2761.	2.7	26
60	A magnetic nanoscale Fe 3 O 4 /P \hat{l}^2 -CD composite as an efficient peroxidase mimetic for glucose detection. Talanta, 2015, 143, 457-463.	5.5	25
61	Microwave-assisted synthesis of ionic liquid-modified silica as a sorbent for the solid-phase extraction of phenolic compounds from water. Analytical Methods, 2014, 6, 704-709.	2.7	18
62	Microwave-assisted preparation of poly(ionic liquids)-modified magnetic nanoparticles for pesticide extraction. Journal of Separation Science, 2014, 37, 1503-1510.	2.5	30
63	Precise measurement for the purity of amino acid and peptide using quantitative nuclear magnetic resonance. Talanta, 2014, 125, 94-101.	5.5	33
64	Cationic \hat{l}^2 -cyclodextrin-modified hybrid magnetic microspheres as chiral selectors for selective chiral absorption of dansyl amino acids. New Journal of Chemistry, 2014, 38, 3630-3636.	2.8	29
65	Immobilization of HSA on polyamidoamine-dendronized magnetic microspheres for application in direct chiral separation of racemates. Journal of Materials Chemistry B, 2014, 2, 775-782.	5.8	41
66	The quantification of human chorionic gonadotropin by two isotope dilution mass spectrometry methods. Analytical Methods, 2014, 6, 8690-8697.	2.7	3
67	Microwave-assisted preparation of magnetic nanoparticles modified with graphene oxide for the extraction and analysis of phenolic compounds. Journal of Separation Science, 2014, 37, 3339-3346.	2.5	23
68	Enantioselective absorption of enantiomers with maleic anhydride- \hat{l}^2 -cyclodextrin modified magnetic microspheres. RSC Advances, 2014, 4, 58514-58521.	3.6	22
69	Fe3O4 peroxidase mimetics as a general strategy for the fluorescent detection of H2O2-involved systems. Talanta, 2014, 130, 259-264.	5.5	46
70	Application of cellulase-polyamidoamine dendrimer-modified silica for microwave-assisted chitosan enzymolysis. Process Biochemistry, 2013, 48, 614-619.	3.7	17
71	Immobilization of cellulase on polyamidoamine dendrimer-grafted silica. Journal of Molecular Catalysis B: Enzymatic, 2013, 89, 35-40.	1.8	49
72	Dendrimer modified magnetic nanoparticles for immobilized BSA: a novel chiral magnetic nano-selector for direct separation of racemates. Journal of Materials Chemistry B, 2013, 1, 5028.	5.8	55

#	Article	IF	CITATIONS
73	IMMUNOEXTRACTION OF TESTOSTERONE AND EPITESTOSTERONE FROM HUMAN URINE SAMPLE BASED ON POLYAMIDOAMINE MODIFIED SILICA. Journal of Immunoassay and Immunochemistry, 2013, 34, 246-254.	1.1	1
74	Optimization of ionic liquid-based microwave-assisted dispersive liquid–liquid microextraction for the determination of plasticizers in water by response surface methodology. Analytical Methods, 2013, 5, 1033.	2.7	19
75	IONIC LIQUID-BASED MICROWAVE-ASSISTED EXTRACTION OF ORGANOCHLORINE PESTICIDES FROM SOIL. Journal of Liquid Chromatography and Related Technologies, 2013, 36, 687-699.	1.0	6
76	Microwave-assisted preparation of a vancomycin modified open tubular capillary electrochromatography column for chiral separation. Analytical Methods, 2013, 5, 5753.	2.7	5
77	Ionic liquid-based solvent bar microextraction for determination of organophosphorus pesticides in water samples. Analytical Methods, 2013, 5, 5074.	2.7	19
78	Synthesis of teicoplanin-modified hybrid magnetic mesoporous silica nanoparticles and their application in chiral separation of racemic compounds. Journal of Colloid and Interface Science, 2013, 399, 107-114.	9.4	60
79	Magnetic nanoparticles coated with immobilized alkaline phosphatase for enzymolysis and enzyme inhibition assays. Journal of Materials Chemistry B, 2013, 1, 1749.	5.8	52
80	lonic liquid based microwave-assisted extraction of triazine and phenylurea herbicides from soil samples. Analytical Methods, 2012, 4, 983.	2.7	11
81	Online immobilized enzyme microreactor for the glucose oxidase enzymolysis and enzyme inhibition assay. Analytical Biochemistry, 2012, 427, 139-143.	2.4	31
82	In-situ ionic liquid-based microwave-assisted dispersive liquid–liquid microextraction of triazine herbicides. Mikrochimica Acta, 2012, 178, 341-347.	5 . 0	41
83	Development of hemoglobin A1c certified reference material by liquid chromatography isotope dilution mass spectrometry. Analytical and Bioanalytical Chemistry, 2012, 403, 549-554.	3.7	11
84	Comparison of microwave-assisted extraction of aloe-emodin in aloe with Soxhlet extraction and ultrasound-assisted extraction. Science China Chemistry, 2011, 54, 231-236.	8.2	14
85	Synthesis of polyamidoamine dendrimer-grafted silica with microwave assisted protocol. Reactive and Functional Polymers, 2010, 70, 129-133.	4.1	33
86	Polyamidoamine dendrimer as a spacer for the immobilization of glucose oxidase in capillary enzyme microreactor. Analytical Biochemistry, 2010, 405, 230-235.	2.4	37
87	Microwave-Assisted Preparation of a \hat{I}^2 -Cyclodextrin-Based Stationary Phase for Open Tubular Capillary Electrochromatography. Analytical Letters, 2010, 43, 2372-2380.	1.8	8
88	Microwaveâ€assisted extraction of rutin and quercetin from the stalks of <i>Euonymus alatus</i> (Thunb.) Sieb. Phytochemical Analysis, 2009, 20, 33-37.	2.4	57