Paula M Canas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4354882/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adenosine A _{2A} Receptor Blockade Prevents Synaptotoxicity and Memory Dysfunction Caused by β-Amyloid Peptides via p38 Mitogen-Activated Protein Kinase Pathway. Journal of Neuroscience, 2009, 29, 14741-14751.	3.6	308
2	Caffeine acts through neuronal adenosine A _{2A} receptors to prevent mood and memory dysfunction triggered by chronic stress. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7833-7838.	7.1	248
3	Adenosine A _{2A} receptors control neuroinflammation and consequent hippocampal neuronal dysfunction. Journal of Neurochemistry, 2011, 117, 100-111.	3.9	182
4	Different synaptic and subsynaptic localization of adenosine A2A receptors in the hippocampus and striatum of the rat. Neuroscience, 2005, 132, 893-903.	2.3	179
5	Adenosine A _{2A} receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms. Annals of Neurology, 2008, 63, 338-346.	5.3	159
6	A Critical Role of the Adenosine A _{2A} Receptor in Extrastriatal Neurons in Modulating Psychomotor Activity as Revealed by Opposite Phenotypes of Striatum and Forebrain A _{2A} Receptor Knock-Outs. Journal of Neuroscience, 2008, 28, 2970-2975.	3.6	152
7	Enhanced role of adenosine A2A receptors in the modulation of LTP in the rat hippocampus upon ageing. European Journal of Neuroscience, 2011, 34, 12-21.	2.6	149
8	Depression as a Glial-Based Synaptic Dysfunction. Frontiers in Cellular Neuroscience, 2015, 9, 521.	3.7	134
9	Age-related shift in LTD is dependent on neuronal adenosine A2A receptors interplay with mGluR5 and NMDA receptors. Molecular Psychiatry, 2020, 25, 1876-1900.	7.9	129
10	Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory. Molecular Psychiatry, 2015, 20, 1339-1349.	7.9	118
11	Modification upon aging of the density of presynaptic modulation systems in the hippocampus. Neurobiology of Aging, 2009, 30, 1877-1884.	3.1	117
12	The P2X7 receptor antagonist Brilliant Blue G attenuates contralateral rotations in a rat model of Parkinsonism through a combined control of synaptotoxicity, neurotoxicity and gliosis. Neuropharmacology, 2014, 81, 142-152.	4.1	104
13	Adenosine A2A receptor blockade prevents memory dysfunction caused by β-amyloid peptides but not by scopolamine or MK-801. Experimental Neurology, 2008, 210, 776-781.	4.1	97
14	Increased density and synapto-protective effect of adenosine A2A receptors upon sub-chronic restraint stress. Neuroscience, 2006, 141, 1775-1781.	2.3	96
15	Key Modulatory Role of Presynaptic Adenosine A _{2A} Receptors in Cortical Neurotransmission to the Striatal Direct Pathway. Scientific World Journal, The, 2009, 9, 1321-1344.	2.1	86
16	Predominant loss of glutamatergic terminal markers in a Î ² -amyloid peptide model of Alzheimer's disease. Neuropharmacology, 2014, 76, 51-56.	4.1	77
17	Synaptic and memory dysfunction in a β-amyloid model of early Alzheimer's disease depends on increased formation of ATP-derived extracellular adenosine. Neurobiology of Disease, 2019, 132, 104570.	4.4	77
18	Overexpression of Adenosine A2A Receptors in Rats: Effects on Depression, Locomotion, and Anxiety. Frontiers in Psychiatry, 2014, 5, 67.	2.6	76

PAULA M CANAS

#	Article	IF	CITATIONS
19	Blockade of adenosine A2A receptors recovers early deficits of memory and plasticity in the triple transgenic mouse model of Alzheimer's disease. Neurobiology of Disease, 2018, 117, 72-81.	4.4	74
20	Adenosine A2A Receptors in Striatal Glutamatergic Terminals and GABAergic Neurons Oppositely Modulate Psychostimulant Action and DARPP-32 Phosphorylation. PLoS ONE, 2013, 8, e80902.	2.5	64
21	Neuronal Adenosine A2A Receptors Are Critical Mediators of Neurodegeneration Triggered by Convulsions. ENeuro, 2018, 5, ENEURO.0385-18.2018.	1.9	58
22	Modification of adenosine modulation of acetylcholine release in the hippocampus of aged rats. Neurobiology of Aging, 2008, 29, 1597-1601.	3.1	54
23	Blockade of adenosine A2A receptors prevents staurosporine-induced apoptosis of rat hippocampal neurons. Neurobiology of Disease, 2007, 27, 182-189.	4.4	51
24	Purinergic signaling orchestrating neuron-glia communication. Pharmacological Research, 2020, 162, 105253.	7.1	49
25	Spermine improves recognition memory deficit in a rodent model of Huntington's disease. Neurobiology of Learning and Memory, 2009, 92, 574-580.	1.9	48
26	Blockade of adenosine A2A receptors prevents interleukin-1β-induced exacerbation of neuronal toxicity through a p38 mitogen-activated protein kinase pathway. Journal of Neuroinflammation, 2012, 9, 204.	7.2	48
27	The role of parkinson's diseaseâ€associated receptor <scp>GPR</scp> 37 in the hippocampus: functional interplay with the adenosinergic system. Journal of Neurochemistry, 2015, 134, 135-146.	3.9	48
28	Anandamide Effects in a Streptozotocin-Induced Alzheimer's Disease-Like Sporadic Dementia in Rats. Frontiers in Neuroscience, 2018, 12, 653.	2.8	44
29	Convergence of adenosine and GABA signaling for synapse stabilization during development. Science, 2021, 374, eabk2055.	12.6	44
30	Adenosine A _{2b} receptors control A ₁ receptorâ€mediated inhibition of synaptic transmission in the mouse hippocampus. European Journal of Neuroscience, 2015, 41, 878-888.	2.6	43
31	Enhanced ATP release and CD73â€mediated adenosine formation sustain adenosine A _{2A} receptor overâ€activation in a rat model of Parkinson's disease. British Journal of Pharmacology, 2019, 176, 3666-3680.	5.4	42
32	Hyperactivation of D1 and A2A receptors contributes to cognitive dysfunction in Huntington's disease. Neurobiology of Disease, 2015, 74, 41-57.	4.4	40
33	The interplay between redox signalling and proteostasis in neurodegeneration: In vivo effects of a mitochondria-targeted antioxidant in Huntington's disease mice. Free Radical Biology and Medicine, 2020, 146, 372-382.	2.9	36
34	GDNF control of the glutamatergic corticoâ€striatal pathway requires tonic activation of adenosine A _{2A} receptors. Journal of Neurochemistry, 2009, 108, 1208-1219.	3.9	33
35	The exercise sex gap and the impact of the estrous cycle on exercise performance in mice. Scientific Reports, 2018, 8, 10742.	3.3	31
36	Adenosine A2A Receptors Control Glutamatergic Synaptic Plasticity in Fast Spiking Interneurons of the Prefrontal Cortex. Frontiers in Pharmacology, 2018, 9, 133.	3.5	30

PAULA M CANAS

#	Article	IF	CITATIONS
37	Neuronal adenosine A2A receptors signal ergogenic effects of caffeine. Scientific Reports, 2020, 10, 13414.	3.3	30
38	Adenosine A ₁ and A _{2A} receptors differently control synaptic plasticity in the mouse dorsal and ventral hippocampus. Journal of Neurochemistry, 2019, 151, 227-237.	3.9	22
39	Association Between Adenosine A2A Receptors and Connexin 43 Regulates Hemichannels Activity and ATP Release in Astrocytes Exposed to Amyloid-β Peptides. Molecular Neurobiology, 2021, 58, 6232-6248.	4.0	21
40	Caffeine Controls Glutamatergic Synaptic Transmission and Pyramidal Neuron Excitability in Human Neocortex. Frontiers in Pharmacology, 2017, 8, 899.	3.5	19
41	Microglia cytoarchitecture in the brain of adenosine A _{2A} receptor knockout mice: Brain region and sex specificities. European Journal of Neuroscience, 2020, 51, 1377-1387.	2.6	16
42	Adenosine A2A Receptors as Biomarkers of Brain Diseases. Frontiers in Neuroscience, 2021, 15, 702581.	2.8	15
43	Mitochondria in Excitatory and Inhibitory Synapses have Similar Susceptibility to Amyloid-β Peptides Modeling Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 60, 525-536.	2.6	14
44	Increased ATP release and CD73-mediated adenosine A2A receptor activation mediate convulsion-associated neuronal damage and hippocampal dysfunction. Neurobiology of Disease, 2021, 157, 105441.	4.4	14
45	Caffeine Consumption plus Physical Exercise Improves Behavioral Impairments and Stimulates Neuroplasticity in Spontaneously Hypertensive Rats (SHR): an Animal Model of Attention Deficit Hyperactivity Disorder. Molecular Neurobiology, 2020, 57, 3902-3919.	4.0	13
46	Use of knockout mice to explore CNS effects of adenosine. Biochemical Pharmacology, 2021, 187, 114367.	4.4	13
47	Adenosine A2A receptors format long-term depression and memory strategies in a mouse model of Angelman syndrome. Neurobiology of Disease, 2020, 146, 105137.	4.4	11
48	Presymptomatic <scp>MPTP</scp> Mice Show Neurotrophic S100B/ <scp>mRAGE</scp> Striatal Levels. CNS Neuroscience and Therapeutics, 2016, 22, 396-403.	3.9	9
49	Age-Related Changes in the Synaptic Density of Amyloid-β Protein Precursor and Secretases in the Human Cerebral Cortex. Journal of Alzheimer's Disease, 2016, 52, 1209-1214.	2.6	8
50	<scp>l</scp> â€î±â€aminoadipate causes astrocyte pathology with negative impact on mouse hippocampal synaptic plasticity and memory. FASEB Journal, 2021, 35, e21726.	0.5	7
51	Deletion of CD73 increases exercise power in mice. Purinergic Signalling, 2021, 17, 393-397.	2.2	6
52	Motor Deficits Coupled to Cerebellar and Striatal Alterations in Ube3amâ^'/p+ Mice Modelling Angelman Syndrome Are Attenuated by Adenosine A2A Receptor Blockade. Molecular Neurobiology, 2021, 58, 2543-2557.	4.0	6
53	Adenosine Receptors in Alzheimer's Disease. , 2018, , 259-280.		5
54	Impact of blunting astrocyte activity on hippocampal synaptic plasticity in a mouse model of early Alzheimer's disease based on amyloidâ€Ĵ² peptide exposure. Journal of Neurochemistry, 2022, , .	3.9	5

PAULA M CANAS

#	Article	IF	CITATIONS
55	Adenosine A2A receptors blockade attenuates dexamethasone-induced alterations in cultured astrocytes. Purinergic Signalling, 2022, 18, 199-204.	2.2	5
56	Brain Membrane Fractionation: An Ex Vivo Approach to Assess Subsynaptic Protein Localization. Journal of Visualized Experiments, 2017, , .	0.3	4
57	Subsynaptic Membrane Fractionation. Neuromethods, 2016, , 31-37.	0.3	4
58	M16 D1R and A2AR Blockade Normalises PKA Activity and Improves Hippocampal-dependent Cognitive Dysfunction but not Motor Deficits in Huntington's Disease. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, A99-A100.	1.9	1
59	I10â€Effects of MITOQ on behavioural and biochemical phenotypes of a huntington's disease mouse model. , 2018, , .		0
60	Subsynaptic Membrane Fractionation. Neuromethods, 2021, , 31-38.	0.3	0