Stein W Wallace

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/435456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Problem-driven scenario generation: an analytical approach for stochastic programs with tail risk measure. Mathematical Programming, 2022, 191, 141-182.	2.4	10
2	Non-compliance in transit-based evacuation pick-up point assignments. Socio-Economic Planning Sciences, 2022, 82, 101259.	5.0	3
3	Autonomous vessels: state of the art and potential opportunities in logistics. International Transactions in Operational Research, 2021, 28, 1706-1739.	2.7	46
4	A two-echelon location-routing problem with synchronisation. Journal of the Operational Research Society, 2021, 72, 145-160.	3.4	21
5	Soft clustering-based scenario bundling for a progressive hedging heuristic in stochastic service network design. Computers and Operations Research, 2021, 128, 105182.	4.0	10
6	On scenario construction for stochastic shortest path problems in real road networks. Transportation Research, Part E: Logistics and Transportation Review, 2021, 152, 102410.	7.4	8
7	Operational benefits of autonomous vessels in logistics—A case of autonomous water-taxis in Bergen. Transportation Research, Part E: Logistics and Transportation Review, 2021, 154, 102456.	7.4	8
8	Editorial to the Special Issue on Transportation and Logistics with Autonomous Technologies. International Transactions in Operational Research, 2021, 28, 1619-1625.	2.7	2
9	Handling financial risks in crude oil imports: Taking into account crude oil prices as well as country and transportation risks. Transportation Research, Part E: Logistics and Transportation Review, 2020, 133, 101824.	7.4	13
10	Understanding the marginal distributions and correlations of link travel speeds in road networks. Scientific Reports, 2020, 10, 11821.	3.3	1
11	Scenario tree construction driven by heuristic solutions of the optimization problem. Computational Management Science, 2020, 17, 277-307.	1.3	5
12	Building Trust in Home Services—Stochastic Team-Orienteering with Consistency Constraints. Transportation Science, 2020, 54, 823-838.	4.4	23
13	Introduction to the Special Section: Urban Freight Transportation and Logistics. Transportation Science, 2020, 54, 565-566.	4.4	0
14	Integrated maritime fuel management with stochastic fuel prices and new emission regulations. Journal of the Operational Research Society, 2019, 70, 707-725.	3.4	14
15	Vehicle Routing with Space- and Time-Correlated Stochastic Travel Times: Evaluating the Objective Function. INFORMS Journal on Computing, 2019, 31, 654-670.	1.7	13
16	Can an Emission Trading Scheme really reduce CO2 emissions in the short term? Evidence from a maritime fleet composition and deployment model. Transportation Research, Part D: Transport and Environment, 2019, 74, 318-338.	6.8	50
17	Stochastic Network Design for Planning Scheduled Transportation Services: The Value of Deterministic Solutions. INFORMS Journal on Computing, 2019, 31, 153-170.	1.7	26
18	Stochastic optimization models for a bike-sharing problem with transshipment. European Journal of Operational Research, 2019, 276, 272-283.	5.7	52

#	Article	IF	CITATIONS
19	Big Data Analytics in Operations Management. Production and Operations Management, 2018, 27, 1868-1883.	3.8	481
20	Planning for charters: A stochastic maritime fleet composition and deployment problem. Omega, 2018, 79, 54-66.	5.9	23
21	Scenario Generation for Single-Period Portfolio Selection Problems with Tail Risk Measures: Coping with High Dimensions and Integer Variables. INFORMS Journal on Computing, 2018, 30, 472-491.	1.7	3
22	Stochastic programs with binary distributions: structural properties of scenario trees and algorithms. Computational Management Science, 2018, 15, 397-410.	1.3	6
23	Which uncertainty is important in multistage stochastic programmes? A case from maritime transportation. IMA Journal of Management Mathematics, 2017, 28, 5-17.	1.6	14
24	Stochastic multi-commodity network design: The quality of deterministic solutions. Operations Research Letters, 2017, 45, 266-268.	0.7	5
25	Stochastic energy market equilibrium modeling with multiple agents. Energy, 2017, 134, 984-990.	8.8	7
26	The impact of design uncertainty in engineer-to-order project planning. European Journal of Operational Research, 2017, 261, 1098-1109.	5.7	34
27	Scrubber: A potentially overestimated compliance method for the Emission Control Areas. Transportation Research, Part D: Transport and Environment, 2017, 55, 51-66.	6.8	71
28	Stochastic scheduled service network design in the presence of a spot market for excess capacity. EURO Journal on Transportation and Logistics, 2016, 5, 393-413.	2.2	10
29	The impact of wind uncertainty on the strategic valuation of distributed electricity storage. Computational Management Science, 2016, 13, 5-27.	1.3	18
30	Risk management and coordination in service supply chains: information, logistics and outsourcing. Journal of the Operational Research Society, 2016, 67, 159-164.	3.4	65
31	Uncertainty in Fleet Renewal: A Case from Maritime Transportation. Transportation Science, 2016, 50, 390-407.	4.4	40
32	Synergy of smart grids and hybrid distributed generation on the value of energy storage. Applied Energy, 2016, 170, 476-488.	10.1	91
33	Appraising redundancy in facility layout. International Journal of Production Research, 2016, 54, 665-679.	7.5	8
34	Service supply chain management: A review of operational models. European Journal of Operational Research, 2015, 247, 685-698.	5.7	261
35	Solving Hierarchical Stochastic Programs: Application to the Maritime Fleet Renewal Problem. INFORMS Journal on Computing, 2015, 27, 89-102.	1.7	23
36	Distributionally robust multi-item newsvendor problems with multimodal demand distributions. Mathematical Programming, 2015, 152, 1-32.	2.4	87

#	Article	IF	CITATIONS
37	Integrated Facility Layout Design and Flow Assignment Problem Under Uncertainty. INFORMS Journal on Computing, 2014, 26, 798-808.	1.7	15
38	The value of electricity storage in domestic homes: a smart grid perspective. Energy Systems, 2014, 5, 211-232.	3.0	41
39	Stochastic service network design with rerouting. Transportation Research Part B: Methodological, 2014, 60, 50-65.	5.9	68
40	Planning vessel air emission regulations compliance under uncertainty. Journal of Marine Science and Technology, 2013, 18, 349-357.	2.9	22
41	Stochastic Second-Order Cone Programming in Mobile Ad-Hoc Networks: Sensitivity to Input Parameters. World Scientific Series in Finance, 2013, , 467-486.	0.3	1
42	Modeling with Stochastic Programming. Springer Series in Operations Research, 2012, , .	1.4	145
43	Analyzing the quality of the expected value solution inÂstochastic programming. Annals of Operations Research, 2012, 200, 37-54.	4.1	77
44	Single-commodity network design with random edge capacities. European Journal of Operational Research, 2012, 220, 394-403.	5.7	13
45	Single source single-commodity stochastic network design. Computational Management Science, 2012, 9, 139-160.	1.3	22
46	Single-Commodity Network Design with Stochastic Demand and Multiple Sources and Sinks. Infor, 2011, 49, 193-211.	0.6	10
47	Flexibility, information structure, options, and market power in robust supply chains. International Journal of Production Economics, 2011, 134, 284-288.	8.9	35
48	Modelling consumer-directed substitution. International Journal of Production Economics, 2011, 134, 388-397.	8.9	23
49	Shape-based scenario generation using copulas. Computational Management Science, 2011, 8, 181-199.	1.3	43
50	Progressive hedgingâ€based metaheuristics for stochastic network design. Networks, 2011, 58, 114-124.	2.7	98
51	Challenges in apparel production planning and control. Production Planning and Control, 2011, 22, 209-209.	8.8	3
52	The value of numerical models in quick response assortment planning. Production Planning and Control, 2011, 22, 221-236.	8.8	4
53	Stochastic programming and the option of doing itÂdifferently. Annals of Operations Research, 2010, 177, 3-8.	4.1	21
54	Inequality comparisons when the populations differ in size. Journal of Economic Inequality, 2010, 8, 47-70.	3.5	8

#	Article	IF	CITATIONS
55	A Study of Demand Stochasticity in Service Network Design. Transportation Science, 2009, 43, 144-157.	4.4	147
56	Product variety arising from hedging in the fashion supply chains. International Journal of Production Economics, 2008, 114, 431-455.	8.9	86
57	CORRELATIONS IN STOCHASTIC PROGRAMMING: A CASE FROM STOCHASTIC SERVICE NETWORK DESIGN. Asia-Pacific Journal of Operational Research, 2007, 24, 161-179.	1.3	26
58	Stability analysis of portfolio management with conditional value-at-risk. Quantitative Finance, 2007, 7, 397-409.	1.7	63
59	An electricity market game between consumers, retailers and network operators. Decision Support Systems, 2005, 40, 427-438.	5.9	22
60	Dalton transfers, inequality and altruism. Social Choice and Welfare, 2004, 22, 447-465.	0.8	13
61	A Heuristic for Moment-Matching Scenario Generation. Computational Optimization and Applications, 2003, 24, 169-185.	1.6	333
62	Sensitivity Analysis and Uncertainty in Linear Programming. Interfaces, 2003, 33, 53-60.	1.5	68
63	The performance of stochastic dynamic and fixed mix portfolio models. European Journal of Operational Research, 2002, 140, 37-49.	5.7	71
64	Generating Scenario Trees for Multistage Decision Problems. Management Science, 2001, 47, 295-307.	4.1	531
65	Analyzing legal regulations in the Norwegian life insurance business using a multistage asset–liability management model. European Journal of Operational Research, 2001, 134, 293-308.	5.7	12
66	Improving project cost estimation by taking into account managerial flexibility. European Journal of Operational Research, 2000, 127, 239-251.	5.7	32
67	Scenarios for Multistage Stochastic Programs. Annals of Operations Research, 2000, 100, 25-53.	4.1	380
68	Decision Making Under Uncertainty: Is Sensitivity Analysis of Any Use?. Operations Research, 2000, 48, 20-25.	1.9	157
69	Modelling aspects of distributed processingin telecommunication networks. Annals of Operations Research, 1998, 82, 161-185.	4.1	14
70	Option theory and modeling under uncertainty. Annals of Operations Research, 1998, 82, 59-82.	4.1	16
71	Solving linear programs with multiple right-hand sides: Pricing and ordering schemes. Annals of Operations Research, 1996, 64, 237-259.	4.1	7
72	Preprocessing in Stochastic Programming: The Case of Capacitated Networks. ORSA Journal on Computing, 1995, 7, 44-62.	1.7	10

#	Article	IF	CITATIONS
73	Bounding multi-stage stochastic programs from above. Mathematical Programming, 1993, 61, 111-129.	2.4	7
74	The facets of the polyhedral set determined by the Gale—Hoffman inequalities. Mathematical Programming, 1993, 62, 215-222.	2.4	14
75	Overcoming the (Apparent) Problem of Inconsistency in Origin-Destination Matrix Estimations. Transportation Science, 1993, 27, 374-380.	4.4	11
76	Preprocessing in Stochastic Programming: The Case of Linear Programs. ORSA Journal on Computing, 1992, 4, 45-59.	1.7	28
77	Approximate scenario solutions in the progressive hedging algorithm. Annals of Operations Research, 1991, 31, 425-444.	4.1	44
78	Structural properties of the progressive hedging algorithm. Annals of Operations Research, 1991, 31, 445-455.	4.1	19
79	Bounding the expected time-cost curve for a stochastic pert network from below. Operations Research Letters, 1989, 8, 89-94.	0.7	14
80	Preprocessing in Stochastic Programming: The Case of Uncapacitated Networks. ORSA Journal on Computing, 1989, 1, 252-270.	1.7	19
81	Solving many linear programs that differ only in the righthand side. European Journal of Operational Research, 1988, 37, 318-324.	5.7	14
82	A piecewise linear upper bound on the network recourse function. Mathematical Programming, 1987, 38, 133-146.	2.4	42
83	Investing in arcs in a network to maximize the expected max flow. Networks, 1987, 17, 87-103.	2.7	17
84	Solving stochastic programs with network recourse. Networks, 1986, 16, 295-317.	2.7	66
85	Refining bounds for stochastic linear programs with linearly transformed independent random variables. Operations Research Letters, 1986, 5, 73-77.	0.7	15
86	Pivoting rules and redundancy schemes in extreme point enumeration. BIT Numerical Mathematics, 1985, 25, 274-280.	2.0	7
87	Can an Emission Trading Scheme Really Reduce CO2 Emissions in the Short Term? Evidence from a Maritime Fleet Composition and Deployment Model. SSRN Electronic Journal, 0, , <u>.</u>	0.4	0