List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4354547/publications.pdf Version: 2024-02-01

		23567	17592
118	17,713	58	121
papers	citations	h-index	g-index
132	132	132	17426
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis of layered nanomaterials. , 2023, , 171-188.		1
2	Sustainable biomass upgrading coupled with H2 generation over in-situ oxidized Co3O4 electrocatalysts. Applied Catalysis B: Environmental, 2022, 307, 121209.	20.2	29
3	Identification of Cu(100)/Cu(111) Interfaces as Superior Active Sites for CO Dimerization During CO ₂ Electroreduction. Journal of the American Chemical Society, 2022, 144, 259-269.	13.7	171
4	Reduction-Controlled Atomic Migration for Single Atom Alloy Library. Nano Letters, 2022, 22, 4232-4239.	9.1	20
5	Seawater electrolysis technologies for green hydrogen production: challenges and opportunities. Current Opinion in Chemical Engineering, 2022, 36, 100827.	7.8	47
6	Carbon Dioxide Valorization via Formate Electrosynthesis in a Wide Potential Window. Advanced Functional Materials, 2022, 32, .	14.9	37
7	General Synthesis of Tube-like Nanostructured Perovskite Oxides with Tunable Transition Metal–Oxygen Covalency for Efficient Water Electrooxidation in Neutral Media. Journal of the American Chemical Society, 2022, 144, 13163-13173.	13.7	39
8	Regulating the oxidation state of nanomaterials for electrocatalytic CO ₂ reduction. Energy and Environmental Science, 2021, 14, 1121-1139.	30.8	178
9	Soft chemistry of metastable metal chalcogenide nanomaterials. Chemical Society Reviews, 2021, 50, 6671-6683.	38.1	30
10	Rigorous assessment of CO ₂ electroreduction products in a flow cell. Energy and Environmental Science, 2021, 14, 4169-4176.	30.8	71
11	An Efficient Turingâ€Type Ag ₂ Seâ€CoSe ₂ Multiâ€Interfacial Oxygenâ€Evolving Electrocatalyst**. Angewandte Chemie - International Edition, 2021, 60, 6553-6560.	13.8	45
12	An Efficient Turingâ€Type Ag 2 Seâ€CoSe 2 Multiâ€Interfacial Oxygenâ€Evolving Electrocatalyst**. Angewandte Chemie, 2021, 133, 6627-6634.	2.0	7
13	Rücktitelbild: An Efficient Turingâ€Type Ag ₂ Seâ€CoSe ₂ Multiâ€Interfacial Oxygenâ€Evolving Electrocatalyst (Angew. Chem. 12/2021). Angewandte Chemie, 2021, 133, 6904-6904.	2.0	0
14	Hierarchical Copper with Inherent Hydrophobicity Mitigates Electrode Flooding for High-Rate CO ₂ Electroreduction to Multicarbon Products. Journal of the American Chemical Society, 2021, 143, 8011-8021.	13.7	174
15	Largeâ€Area Crystalline Zeolitic Imidazolate Framework Thin Films. Angewandte Chemie, 2021, 133, 14243-14249.	2.0	4
16	Ternary nickel–tungsten–copper alloy rivals platinum for catalyzing alkaline hydrogen oxidation. Nature Communications, 2021, 12, 2686.	12.8	98
17	Largeâ€Area Crystalline Zeolitic Imidazolate Framework Thin Films. Angewandte Chemie - International Edition, 2021, 60, 14124-14130.	13.8	30
18	Electronic Delocalization of Bismuth Oxide Induced by Sulfur Doping for Efficient CO ₂ Electroreduction to Formate. ACS Catalysis, 2021, 11, 7604-7612.	11.2	80

#	Article	IF	CITATIONS
19	Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Advanced Materials, 2021, 33, e2007100.	21.0	781
20	Electrochemical CO ₂ Reduction on Transition-Metal Chalcogenide Catalysts: Recent Advances and Future Perspectives. Energy & Fuels, 2021, 35, 12869-12883.	5.1	33
21	Boosting photoelectrochemical efficiency by near-infrared-active lattice-matched morphological heterojunctions. Nature Communications, 2021, 12, 4296.	12.8	23
22	Strongly Coupled Cobalt Diselenide Monolayers for Selective Electrocatalytic Oxygen Reduction to H ₂ O ₂ under Acidic Conditions. Angewandte Chemie - International Edition, 2021, 60, 26922-26931.	13.8	61
23	Rational design of CdCO3 nanoparticles decorated carbon nanofibers for boosting electrochemical CO2 reduction. Journal of Power Sources, 2021, 510, 230433.	7.8	10
24	Bi ₂ O ₃ Nanosheets Grown on Carbon Nanofiber with Inherent Hydrophobicity for High-Performance CO ₂ Electroreduction in a Wide Potential Window. ACS Nano, 2021, 15, 17757-17768.	14.6	47
25	Stabilizing indium sulfide for CO2 electroreduction to formate at high rate by zinc incorporation. Nature Communications, 2021, 12, 5835.	12.8	94
26	Frontispiece: Strongly Coupled Cobalt Diselenide Monolayers for Selective Electrocatalytic Oxygen Reduction to H ₂ O ₂ under Acidic Conditions. Angewandte Chemie - International Edition, 2021, 60, .	13.8	2
27	Frontispiz: Strongly Coupled Cobalt Diselenide Monolayers for Selective Electrocatalytic Oxygen Reduction to H ₂ O ₂ under Acidic Conditions. Angewandte Chemie, 2021, 133, .	2.0	0
28	Highâ€Curvature Transitionâ€Metal Chalcogenide Nanostructures with a Pronounced Proximity Effect Enable Fast and Selective CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2020, 59, 8706-8712.	13.8	145
29	High urvature Transitionâ€Metal Chalcogenide Nanostructures with a Pronounced Proximity Effect Enable Fast and Selective CO ₂ Electroreduction. Angewandte Chemie, 2020, 132, 8784-8790.	2.0	37
30	Embedding Ultrafine Metal Oxide Nanoparticles in Monolayered Metal–Organic Framework Nanosheets Enables Efficient Electrocatalytic Oxygen Evolution. ACS Nano, 2020, 14, 1971-1981.	14.6	109
31	Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes. Nature Communications, 2020, 11, 4789.	12.8	192
32	Unconventional dual-vacancies in nickel diselenide-graphene nanocomposite for high-efficiency oxygen evolution catalysis. Nano Research, 2020, 13, 3292-3298.	10.4	16
33	Electrochemical CO ₂ -to-CO conversion: electrocatalysts, electrolytes, and electrolyzers. Journal of Materials Chemistry A, 2020, 8, 15458-15478.	10.3	118
34	<i>In Situ</i> Exsolved Metal Nanoparticles: A Smart Approach for Optimization of Catalysts. Chemistry of Materials, 2020, 32, 5424-5441.	6.7	89
35	Hexagonal Zn Nanoplates Enclosed by Zn(100) and Zn(002) Facets for Highly Selective CO ₂ Electroreduction to CO. ACS Applied Materials & Interfaces, 2020, 12, 31431-31438.	8.0	51
36	Protecting Copper Oxidation State via Intermediate Confinement for Selective CO ₂ Electroreduction to C ₂₊ Fuels. Journal of the American Chemical Society, 2020, 142, 6400-6408.	13.7	396

#	Article	IF	CITATIONS
37	Sandwichâ€Type Polyoxometalate Mediates Cobalt Diselenide for Hydrogen Evolution in Acidic Electrolyte. ChemNanoMat, 2020, 6, 1164-1168.	2.8	11
38	Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting. Nano Energy, 2020, 71, 104652.	16.0	105
39	Exploring Ni(Mn _{1/3} Cr _{2/3}) ₂ O ₄ spinel-based electrodes for solid oxide cells. Journal of Materials Chemistry A, 2020, 8, 3988-3998.	10.3	27
40	Scaledâ€Up Synthesis of Amorphous NiFeMo Oxides and Their Rapid Surface Reconstruction for Superior Oxygen Evolution Catalysis. Angewandte Chemie - International Edition, 2019, 58, 15772-15777.	13.8	426
41	Scaledâ€Up Synthesis of Amorphous NiFeMo Oxides and Their Rapid Surface Reconstruction for Superior Oxygen Evolution Catalysis. Angewandte Chemie, 2019, 131, 15919-15924.	2.0	62
42	Bioâ€Inspired Synthesis of Hematite Mesocrystals by Using Xonotlite Nanowires as Growth Modifiers and Their Improved Oxygen Evolution Activity. ChemSusChem, 2019, 12, 3747-3752.	6.8	6
43	Hollow Porous Ag Spherical Catalysts for Highly Efficient and Selective Electrocatalytic Reduction of CO ₂ to CO. ACS Sustainable Chemistry and Engineering, 2019, 7, 14443-14450.	6.7	40
44	Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis. Nature Communications, 2019, 10, 2799.	12.8	202
45	"Superaerophobic―Nickel Phosphide Nanoarray Catalyst for Efficient Hydrogen Evolution at Ultrahigh Current Densities. Journal of the American Chemical Society, 2019, 141, 7537-7543.	13.7	401
46	<i>In situ</i> anchoring of a Co ₃ O ₄ nanowire on nickel foam: an outstanding bifunctional catalyst for energy-saving simultaneous reactions. Green Chemistry, 2019, 21, 6699-6706.	9.0	89
47	Polymorphic cobalt diselenide as extremely stable electrocatalyst in acidic media via a phase-mixing strategy. Nature Communications, 2019, 10, 5338.	12.8	65
48	Synthesis of PdS _x -Mediated Polydymite Heteronanorods and Their Long-Range Activation for Enhanced Water Electroreduction. Research, 2019, 2019, 8078549.	5.7	9
49	Directionally assembled MoS ₂ with significantly expanded interlayer spacing: a superior anode material for high-rate lithium-ion batteries. Materials Chemistry Frontiers, 2018, 2, 1441-1448.	5.9	12
50	Synthesis of Subâ€2 nm Ironâ€Đoped NiSe ₂ Nanowires and Their Surface onfined Oxidation for Oxygen Evolution Catalysis. Angewandte Chemie, 2018, 130, 4084-4088.	2.0	33
51	Synthesis of Subâ€2â€nm Ironâ€Đoped NiSe ₂ Nanowires and Their Surface onfined Oxidation for Oxygen Evolution Catalysis. Angewandte Chemie - International Edition, 2018, 57, 4020-4024.	13.8	133
52	Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion <i>via</i> urea electrolysis. Energy and Environmental Science, 2018, 11, 1890-1897.	30.8	599
53	Selective oxidation mediated synthesis of unique SexTey nanotubes, their assembled thin films and photoconductivity. Nano Research, 2018, 11, 665-675.	10.4	7
54	Innenrücktitelbild: A Janus Nickel Cobalt Phosphide Catalyst for Highâ€Efficiency Neutralâ€pH Water Splitting (Angew. Chem. 47/2018). Angewandte Chemie, 2018, 130, 15833-15833.	2.0	1

#	Article	IF	CITATIONS
55	A Janus Nickel Cobalt Phosphide Catalyst for Highâ€Efficiency Neutralâ€pH Water Splitting. Angewandte Chemie - International Edition, 2018, 57, 15445-15449.	13.8	299
56	A Janus Nickel Cobalt Phosphide Catalyst for Highâ€Efficiency Neutralâ€pH Water Splitting. Angewandte Chemie, 2018, 130, 15671-15675.	2.0	87
57	Grafting Cobalt Diselenide on Defective Graphene for Enhanced Oxygen Evolution Reaction. IScience, 2018, 7, 145-153.	4.1	39
58	Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nature Communications, 2018, 9, 2533.	12.8	356
59	Phaseâ€Selective Syntheses of Cobalt Telluride Nanofleeces for Efficient Oxygen Evolution Catalysts. Angewandte Chemie - International Edition, 2017, 56, 7769-7773.	13.8	157
60	Phaseâ€ S elective Syntheses of Cobalt Telluride Nanofleeces for Efficient Oxygen Evolution Catalysts. Angewandte Chemie, 2017, 129, 7877-7881.	2.0	24
61	Thermosensitive polymer controlled morphogenesis and phase discrimination of calcium carbonate. Chemical Communications, 2017, 53, 6464-6467.	4.1	8
62	A tale of two membranes: from poly (ionic liquid) to metal–organic framework hybrid nanoporous membranes <i>via</i> pseudomorphic replacement. Materials Horizons, 2017, 4, 681-687.	12.2	39
63	From covalent triazine-based frameworks to N-doped porous carbon/reduced graphene oxide nanosheets: efficient electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 23170-23178.	10.3	60
64	Pyrite-Type Nanomaterials for Advanced Electrocatalysis. Accounts of Chemical Research, 2017, 50, 2194-2204.	15.6	130
65	Ionic Liquids and Poly(ionic liquid)s for Morphosynthesis of Inorganic Materials. Chemistry - A European Journal, 2017, 23, 5391-5403.	3.3	72
66	A one-dimensional porous carbon-supported Ni/Mo ₂ C dual catalyst for efficient water splitting. Chemical Science, 2017, 8, 968-973.	7.4	372
67	Poly(ionic liquid)â€Mediated Morphogenesis of Bismuth Sulfide with a Tunable Band Gap and Enhanced Electrocatalytic Properties. Angewandte Chemie - International Edition, 2016, 55, 12812-12816.	13.8	34
68	Poly(ionic liquid)â€Mediated Morphogenesis of Bismuth Sulfide with a Tunable Band Gap and Enhanced Electrocatalytic Properties. Angewandte Chemie, 2016, 128, 13004-13008.	2.0	10
69	Hollow Chevrelâ€Phase NiMo ₃ S ₄ for Hydrogen Evolution in Alkaline Electrolytes. Angewandte Chemie, 2016, 128, 15466-15471.	2.0	59
70	Hollow Chevrelâ€Phase NiMo ₃ S ₄ for Hydrogen Evolution in Alkaline Electrolytes. Angewandte Chemie - International Edition, 2016, 55, 15240-15245.	13.8	133
71	Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering. Nano Letters, 2016, 16, 715-720.	9.1	50
72	Porous Molybdenumâ€Based Hybrid Catalysts for Highly Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2015, 54, 12928-12932.	13.8	368

#	Article	IF	CITATIONS
73	Cobalt diselenide nanobelts grafted on carbon fiber felt: an efficient and robust 3D cathode for hydrogen production. Chemical Science, 2015, 6, 4594-4598.	7.4	114
74	Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nature Communications, 2015, 6, 5848.	12.8	784
75	An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Communications, 2015, 6, 5982.	12.8	897
76	Water Oxidation: An Efficient CeO ₂ /CoSe ₂ Nanobelt Composite for Electrochemical Water Oxidation (Small 2/2015). Small, 2015, 11, 260-260.	10.0	4
77	Edge-terminated molybdenum disulfide with a 9.4-Ã interlayer spacing for electrochemical hydrogen production. Nature Communications, 2015, 6, 7493.	12.8	628
78	Carbon-supported PtCo2Ni2 alloy with enhanced activity and stability for oxygen reduction. Science China Materials, 2015, 58, 179-185.	6.3	17
79	An Efficient CeO ₂ /CoSe ₂ Nanobelt Composite for Electrochemical Water Oxidation. Small, 2015, 11, 182-188.	10.0	325
80	Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst. Journal of the American Chemical Society, 2014, 136, 7077-7084.	13.7	1,202
81	Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy and Environmental Science, 2014, 7, 4095-4103.	30.8	537
82	Nitrogen-Doped Graphene Supported CoSe ₂ Nanobelt Composite Catalyst for Efficient Water Oxidation. ACS Nano, 2014, 8, 3970-3978.	14.6	516
83	Selfâ€Assembled Platinum Nanochain Networks Driven by Induced Magnetic Dipoles. Advanced Functional Materials, 2014, 24, 916-924.	14.9	35
84	Ferromagnetism: Self-Assembled Platinum Nanochain Networks Driven by Induced Magnetic Dipoles (Adv. Funct. Mater. 7/2014). Advanced Functional Materials, 2014, 24, 878-878.	14.9	1
85	Nickel/Nickel(II) Oxide Nanoparticles Anchored onto Cobalt(IV) Diselenide Nanobelts for the Electrochemical Production of Hydrogen. Angewandte Chemie - International Edition, 2013, 52, 8546-8550.	13.8	381
86	Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chemical Society Reviews, 2013, 42, 2986.	38.1	1,393
87	One-pot synthesis of branched palladium nanodendrites with superior electrocatalytic performance. Nanoscale, 2013, 5, 3202.	5.6	56
88	Phase Transformation of Magnesium Amorphous Calcium Carbonate (Mg-ACC) in a Binary Solution of Ethanol and Water. Crystal Growth and Design, 2013, 13, 59-65.	3.0	33
89	Shapeâ€Controlled Synthesis of Monodisperse PdCu Nanocubes and Their Electrocatalytic Properties. ChemSusChem, 2013, 6, 1878-1882.	6.8	67
90	Amorphous Calcium Carbonate: Synthesis and Transformation. Biological and Medical Physics Series, 2012, , 189-220.	0.4	3

#	Article	IF	CITATIONS
91	Mixed-solution synthesis of sea urchin-like NiSe nanofiber assemblies as economical Pt-free catalysts for electrochemical H2 production. Journal of Materials Chemistry, 2012, 22, 13662.	6.7	185
92	Surface Composition and Lattice Ordering-Controlled Activity and Durability of CuPt Electrocatalysts for Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 916-924.	11.2	90
93	Solutionâ€Based Synthesis and Design of Late Transition Metal Chalcogenide Materials for Oxygen Reduction Reaction (ORR). Small, 2012, 8, 13-27.	10.0	256
94	Catalysis: Solution-Based Synthesis and Design of Late Transition Metal Chalcogenide Materials for Oxygen Reduction Reaction (ORR) (Small 1/2012). Small, 2012, 8, 12-12.	10.0	7
95	Water Oxidation Electrocatalyzed by an Efficient Mn ₃ O ₄ /CoSe ₂ Nanocomposite. Journal of the American Chemical Society, 2012, 134, 2930-2933.	13.7	644
96	Mixedâ€PtPdâ€Shell PtPdCu Nanoparticle Nanotubes Templated from Copper Nanowires as Efficient and Highly Durable Electrocatalysts. Advanced Energy Materials, 2012, 2, 1182-1187.	19.5	164
97	Ternary PtPdCu Electrocatalyst Formed through Surfaceâ€Atomic Redistribution against Leaching. ChemCatChem, 2012, 4, 1560-1563.	3.7	18
98	Monodisperse Mesocrystals of YF ₃ and Ce ³⁺ /Ln ³⁺ (Ln=Tb, Eu) Coâ€Activated YF ₃ : Shape Control Synthesis, Luminescent Properties, and Biocompatibility. Chemistry - A European Journal, 2012, 18, 5222-5231.	3.3	41
99	Completely Green Synthesis of Colloid Adams' Catalyst αâ€PtO ₂ Nanocrystals and Derivative Pt Nanocrystals with High Activity and Stability for Oxygen Reduction. Chemistry - A European Journal, 2012, 18, 8423-8429.	3.3	38
100	Ionâ€Exchangeâ€Assisted Synthesis of Ptâ€VC Nanoparticles Loaded on Graphitized Carbon: A Highâ€Performance Nanocomposite Electrocatalyst for Oxygenâ€Reduction Reactions. Chemistry - A European Journal, 2012, 18, 8490-8497.	3.3	28
101	Inside Cover: Completely Green Synthesis of Colloid Adams' Catalyst αâ€PtO ₂ Nanocrystals and Derivative Pt Nanocrystals with High Activity and Stability for Oxygen Reduction (Chem. Eur. J.) Tj ETQq1 1 0	.7 8 4314 r	g& /Overloc
102	Confined crystallization of polycrystalline high-magnesium calcite from compact Mg-ACC precursor tablets and its biological implications. CrystEngComm, 2011, 13, 952-956.	2.6	26
103	Remarkable Enhancement of Electrocatalytic Activity by Tuning the Interface of Pd–Au Bimetallic Nanoparticle Tubes. ACS Nano, 2011, 5, 4211-4218.	14.6	129
104	Self-catalytic synthesis of hierarchical vanadium nitride/carbon superconducting nanocomposites. RSC Advances, 2011, 1, 1489.	3.6	4
105	One-pot synthesis of hierarchical magnetite nanochain assemblies with complex building units and their application for water treatment. Journal of Materials Chemistry, 2011, 21, 16888.	6.7	55
106	A Methanolâ€Tolerant Pt/CoSe ₂ Nanobelt Cathode Catalyst for Direct Methanol Fuel Cells. Angewandte Chemie - International Edition, 2011, 50, 4905-4908.	13.8	124
107	Selective Synthesis of Fe ₇ Se ₈ Polyhedra with Exposed Highâ€Index Facets and Fe ₇ Se ₈ Nanorods by a Solvothermal Process in a Binary Solution and Their Collective Intrinsic Properties. Chemistry - A European Journal, 2011, 17, 5068-5075.	3.3	26
108	In situ controllable synthesis of magnetite nanocrystals/CoSe2 hybrid nanobelts and their enhanced catalytic performance. Journal of Materials Chemistry, 2010, 20, 9355.	6.7	65

#	Article	IF	CITATIONS
109	Coaxial Metal Nano″Microcables with Isolating Sheath: Synthetic Methodology and Their Application as Interconnects. Advanced Materials, 2010, 22, 1977-1981.	21.0	24
110	Hierarchical Hollow Co ₉ S ₈ Microspheres: Solvothermal Synthesis, Magnetic, Electrochemical, and Electrocatalytic Properties. Chemistry - A European Journal, 2010, 16, 12000-12007.	3.3	184
111	Ternary Heterostructured Nanoparticle Tubes: A Dual Catalyst and Its Synergistic Enhancement Effects for O ₂ /H ₂ O ₂ Reduction. Angewandte Chemie - International Edition, 2010, 49, 9149-9152.	13.8	71
112	Small organic molecule templating synthesis of organic–inorganic hybrid materials: their nanostructures and properties. Nanoscale, 2010, 2, 323-334.	5.6	93
113	Gram-scale, low-cost, rapid synthesis of highly stable Mg–ACC nanoparticles and their long-term preservation. Nanoscale, 2010, 2, 2358.	5.6	54
114	Monodisperse cubic pyrite NiS2 dodecahedrons and microspheres synthesized by a solvothermal process in a mixed solvent: thermal stability and magnetic properties. CrystEngComm, 2009, 11, 1383.	2.6	140
115	Synthesis of Unique Ultrathin Lamellar Mesostructured CoSe ₂ â^`Amine (Protonated) Nanobelts in a Binary Solution. Journal of the American Chemical Society, 2009, 131, 7486-7487.	13.7	217
116	Template-free polymorph discrimination and synthesis of calcium carbonate minerals. Chemical Communications, 2009, , 5853.	4.1	29
117	Low-temperature Catalytic Reduction of Nitrogen Monoxide with Carbon Monoxide on Copper Iron and Copper Cobalt Composite Oxides. Chinese Journal of Chemical Physics, 2008, 21, 393-400.	1.3	2
118	Strongly Coupled Cobalt Diselenide Monolayers Selectively Catalyze Oxygen Reduction to H2O2 in an Acidic Environment. Angewandte Chemie, 0, , .	2.0	3