Magdalena Streckova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4354161/publications.pdf

Version: 2024-02-01

933447 839539 19 420 10 18 g-index citations h-index papers 19 19 19 389 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Influence of boron addition on the phase transformation, microstructure, mechanical and in-vitro cellular properties of bredigite-type coatings deposited by a spin coating technique. Materials Chemistry and Physics, 2022, 283, 126049.	4.0	3
2	Effect of heat treatment on the morphology of carbon fibers doped with Co2p nanoparticles. Chemical Papers, $2021, 1-13$.	2.2	1
3	Influence of the Ferromagnetic Component on the Magnetic Properties of Polymer-Matrix Soft Magnetic Composites. Powder Metallurgy Progress, 2021, 21, 1-9.	0.1	O
4	Methane Decomposition Over Modified Carbon Fibers as Effective Catalysts for Hydrogen Production. Catalysis Letters, 2020, 150, 781-793.	2.6	5
5	Novel electrocatalysts for hydrogen evolution based on carbon fibers modified by cobalt phosphides. Applied Surface Science, 2020, 507, 144927.	6.1	4
6	Porous carbon fibers for effective hydrogen evolution. Applied Surface Science, 2020, 506, 144955.	6.1	14
7	Preparation and characterization of iron-based soft magnetic composites with resin bonded nano-ferrite insulation. Journal of Alloys and Compounds, 2020, 828, 154416.	5.5	30
8	Design of Permalloy–ferrite–polymer soft magnetic composites doped by ferrite nanoparticles and visualization of magnetic domains. Bulletin of Materials Science, 2020, 43, 1.	1.7	9
9	Magnetic properties of Fe-based soft magnetic composite with insulation coating by resin bonded Ni-Zn ferrite nanofibres. Journal of Magnetism and Magnetic Materials, 2019, 485, 1-7.	2.3	37
10	Fibrous electrocatalytic materials based on carbon/copper/copper phosphides for effective hydrogen evolution. Applied Surface Science, 2019, 479, 70-76.	6.1	10
11	Design of Electroactive Carbon Fibers Decorated with Metal and Metalâ€Phosphide Nanoparticles for Hydrogen Evolution Technology. Energy Technology, 2018, 6, 1310-1331.	3.8	13
12	Analysis of Magnetic Losses and Complex Permeability in Novel Soft Magnetic Composite With Ferrite Nanofibers. IEEE Transactions on Magnetics, 2018, 54, 1-6.	2.1	22
13	Innovative ferrite nanofibres reinforced soft magnetic composite with enhanced electrical resistivity. Journal of Alloys and Compounds, 2018, 753, 219-227.	5 . 5	52
14	Preparation and Investigations of Ni_{0.2}Zn_{0.8}Fe_2O_4 Ferrite Nanofiber Membranes by Needleless Electrospinning Method. Acta Physica Polonica A, 2017, 131, 729-731.	0.5	8
15	Nickel and nickel phosphide nanoparticles embedded in electrospun carbon fibers as favourable electrocatalysts for hydrogen evolution. Chemical Engineering Journal, 2016, 303, 167-181.	12.7	62
16	Magnetic properties and loss separation in FeSi/MnZnFe2O4 soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2016, 411, 12-17.	2.3	90
17	A Novel Composite Material Designed from FeSi Powder and Mn _{0.8} Zn _{0.2} Fe ₂ O ₄ Ferrite. Advances in Materials Science and Engineering, 2015, 2015, 1-8.	1.8	6
18	A comparison of soft magnetic composites designed from different ferromagnetic powders and phenolic resins. Chinese Journal of Chemical Engineering, 2015, 23, 736-743.	3.5	37

#	Article	IF	CITATIONS
19	Chemical synthesis of nickel ferrite spinel designed as an insulating bilayer coating on ferromagnetic particles. Surface and Coatings Technology, 2015, 270, 66-76.	4.8	17