List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4354144/publications.pdf Version: 2024-02-01

IENNIEED K HITE

#	Article	IF	CITATIONS
1	Quantum Linear Magnetoresistance in Multilayer Epitaxial Graphene. Nano Letters, 2010, 10, 3962-3965.	4.5	203
2	Technique for the Dry Transfer of Epitaxial Graphene onto Arbitrary Substrates. ACS Nano, 2010, 4, 1108-1114.	7.3	190
3	Multicycle rapid thermal annealing technique and its application for the electrical activation of Mg implanted in GaN. Journal of Crystal Growth, 2012, 350, 21-26.	0.7	112
4	Structural, Optical, and Electrical Characterization of Monoclinic β-Ga2O3 Grown by MOVPE on Sapphire Substrates. Journal of Electronic Materials, 2016, 45, 2031-2037.	1.0	111
5	Development of solar-blind photodetectors based on Si-implanted β-Ga_2O_3. Optics Express, 2015, 23, 28300.	1.7	103
6	Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes. Applied Physics Letters, 2011, 99, .	1.5	97
7	Activation of Mg implanted in GaN by multicycle rapid thermal annealing. Electronics Letters, 2014, 50, 197-198.	0.5	83
8	Substrate-Dependent Effects on the Response of AlGaN/GaN HEMTs to 2-MeV Proton Irradiation. IEEE Electron Device Letters, 2014, 35, 826-828.	2.2	78
9	Optical and magnetic properties of Eu-doped GaN. Applied Physics Letters, 2006, 89, 132119.	1.5	77
10	Morphology characterization of argon-mediated epitaxial graphene on C-face SiC. Applied Physics Letters, 2010, 96, .	1.5	77
11	Assessment of GaN Surface Pretreatment for Atomic Layer Deposited High- <i>k</i> Dielectrics. Applied Physics Express, 2011, 4, 055802.	1.1	72
12	Effect of Gd implantation on the structural and magnetic properties of GaN and AlN. Applied Physics Letters, 2006, 88, 042102.	1.5	64
13	Reduced self-heating in ALGaN/GaN HEMTs using nanocrystalline diamond heat spreading films. , 2010, ,		64
14	Role of growth conditions on magnetic properties of AlCrN grown by molecular beam epitaxy. Applied Physics Letters, 2005, 86, 052101.	1.5	63
15	Editors' Choice—On the Radiation Tolerance of AlGaN/GaN HEMTs. ECS Journal of Solid State Science and Technology, 2016, 5, Q208-Q212.	0.9	61
16	Effect of Reduced Extended Defect Density in MOCVD Grown AlGaN/GaN HEMTs on Native GaN Substrates. IEEE Electron Device Letters, 2016, 37, 28-30.	2.2	57
17	Effect of 5 MeV proton irradiation damage on performance of β-Ga2O3 photodetectors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34,	0.6	55
18	Ultraviolet photoluminescence from Gd-implanted AlN epilayers. Applied Physics Letters, 2006, 89, 152107.	1.5	45

#	Article	IF	CITATIONS
19	Epitaxial Growth of Cubic and Hexagonal InN Thin Films via Plasma-Assisted Atomic Layer Epitaxy. Crystal Growth and Design, 2013, 13, 1485-1490.	1.4	45
20	Epitaxial growth of AlN films via plasma-assisted atomic layer epitaxy. Applied Physics Letters, 2013, 103, 082110.	1.5	45
21	Symmetric Multicycle Rapid Thermal Annealing: Enhanced Activation of Implanted Dopants in GaN. ECS Journal of Solid State Science and Technology, 2015, 4, P382-P386.	0.9	45
22	Selective p-type Doping of GaN:Si by Mg Ion Implantation and Multicycle Rapid Thermal Annealing. ECS Journal of Solid State Science and Technology, 2016, 5, P124-P127.	0.9	43
23	Epitaxial graphene surface preparation for atomic layer deposition of Al2O3. Journal of Applied Physics, 2011, 109, .	1.1	42
24	Epitaxial Graphene Nucleation on C-Face Silicon Carbide. Nano Letters, 2011, 11, 1190-1194.	4.5	40
25	GaN-based ultraviolet light-emitting diodes with AuCl_3-doped graphene electrodes. Optics Express, 2013, 21, 29025.	1.7	40
26	Nanocrystalline Diamond Integration with III-Nitride HEMTs. ECS Journal of Solid State Science and Technology, 2017, 6, Q3036-Q3039.	0.9	40
27	Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes. Optics Express, 2010, 18, 23030.	1.7	39
28	Perspectives on future directions in III-N semiconductor research. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	39
29	Multicycle rapid thermal annealing optimization of Mg-implanted GaN: Evolution of surface, optical, and structural properties. Journal of Applied Physics, 2014, 116, .	1.1	39
30	Thermal atomic layer etching of crystalline GaN using sequential exposures of XeF2 and BCl3. Applied Physics Letters, 2019, 114, .	1.5	38
31	Improved Vertical GaN Schottky Diodes with Ion Implanted Junction Termination Extension. ECS Journal of Solid State Science and Technology, 2016, 5, Q176-Q178.	0.9	35
32	Development of periodically oriented gallium nitride for non-linear optics [Invited]. Optical Materials Express, 2012, 2, 1203.	1.6	34
33	Growth and characterization of III-N ternary thin films by plasma assisted atomic layer epitaxy at low temperatures. Thin Solid Films, 2015, 589, 47-51.	0.8	33
34	Space-charge-limited currents and trap characterization in coaxial AlGaN/GaN nanowires. Journal of Applied Physics, 2011, 110, .	1.1	31
35	An AlN/Ultrathin AlGaN/GaN HEMT Structure for Enhancement-Mode Operation Using Selective Etching. IEEE Electron Device Letters, 2009, 30, 1251-1253.	2.2	30
36	Achieving clean epitaxial graphene surfaces suitable for device applications by improved lithographic process. Applied Physics Letters, 2014, 104, .	1.5	30

JENNIFER K HITE

#	Article	IF	CITATIONS
37	Improvements in the Annealing of Mg Ion Implanted GaN and Related Devices. IEEE Transactions on Semiconductor Manufacturing, 2016, 29, 343-348.	1.4	30
38	Effect of GaN surface treatment on Al2O3/ <i>n</i> -GaN MOS capacitors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	0.6	29
39	Effect of growth conditions on the magnetic characteristics of GaGdN. Applied Physics Letters, 2006, 89, 092119.	1.5	28
40	Optical and magnetic behavior of erbium-doped GaN epilayers grown by metal-organic chemical vapor deposition. Applied Physics Letters, 2007, 91, .	1.5	28
41	Elevated temperature performance of Si-implanted solar-blind β-Ga2O3 photodetectors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	0.6	28
42	Electrical and Optical Characterization of AlGaN/GaN HEMTs with InÂSitu and ExÂSitu Deposited SiN x Layers. Journal of Electronic Materials, 2010, 39, 2452-2458.	1.0	27
43	Polarization fields in III-nitride nanowire devices. Nanotechnology, 2010, 21, 145205.	1.3	27
44	Enhancement of light extraction efficiency of ultraviolet light emitting diodes by patterning of SiO2 nanosphere arrays. Thin Solid Films, 2009, 517, 2742-2744.	0.8	26
45	GaN vertical and lateral polarity heterostructures on GaN substrates. Journal of Crystal Growth, 2011, 332, 43-47.	0.7	26
46	Effect of Si Co Doping on Ferromagnetic Properties of GaGdN. Journal of Electronic Materials, 2007, 36, 391-396.	1.0	25
47	Buried graphene electrodes on GaN-based ultra-violet light-emitting diodes. Applied Physics Letters, 2012, 101, .	1.5	25
48	Growth and spectroscopic characterization of monolayer and few-layer hexagonal boron nitride on metal substrates. Nanoscale, 2015, 7, 3694-3702.	2.8	25
49	Influence of HVPE substrates on homoepitaxy of GaN grown by MOCVD. Journal of Crystal Growth, 2018, 498, 352-356.	0.7	25
50	Characterization of Recessed-Gate AlGaN/GaN HEMTs as a Function of Etch Depth. Journal of Electronic Materials, 2010, 39, 478-481.	1.0	22
51	Reverse gate bias-induced degradation of AlGaN/GaN high electron mobility transistors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 1044-1047.	0.6	22
52	Nanostructured n-ZnO / thin film p-silicon heterojunction light-emitting diodes. Optics Express, 2011, 19, 26006.	1.7	22
53	Selective chemical etch of gallium nitride by phosphoric acid. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 040602.	0.9	22
54	Nanocrystalline diamond capped AlGaN/GaN high electron mobility transistors via a sacrificial gate process. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 893-897.	0.8	22

JENNIFER K HITE

#	Article	IF	CITATIONS
55	Characterization of β-Ga ₂ O ₃ homoepitaxial films and MOSFETs grown by MOCVD at high growth rates. Journal Physics D: Applied Physics, 2021, 54, 034005.	1.3	22
56	Initiating polarity inversion in GaN growth using an AlN interlayer. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1504-1506.	0.8	21
57	Inductively coupled plasma etching of nano-patterned sapphire for flip-chip GaN light emitting diode applications. Thin Solid Films, 2008, 516, 7744-7747.	0.8	20
58	Broadband measurements of the refractive indices of bulk Gallium Nitride. Optical Materials Express, 2014, 4, 1287.	1.6	20
59	Impact of surface treatments on high-κ dielectric integration with Ga-polar and N-polar GaN. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, .	0.6	20
60	Chemical etching behaviors of semipolar (112̄2) and nonpolar (112̄0) gallium nitride films. Physical Chemistry Chemical Physics, 2014, 16, 15780.	1.3	20
61	Dense nanocrystalline yttrium iron garnet films formed at room temperature by aerosol deposition. Materials Research Bulletin, 2016, 76, 365-369.	2.7	20
62	Electrothermal evaluation of thick GaN epitaxial layers and AlGaN/GaN high-electron-mobility transistors on large-area engineered substrates. Applied Physics Express, 2017, 10, 126501.	1.1	20
63	Nanocrystalline Diamond-Gated AlGaN/GaN HEMT. IEEE Electron Device Letters, 2013, 34, 1382-1384.	2.2	18
64	Photopolymerization of Self-Assembled Monolayers of Diacetylenic Alkylphosphonic Acids on Group-III Nitride Substrates. Langmuir, 2010, 26, 10725-10730.	1.6	17
65	Advances in Diamond Integration for Thermal Management in GaN Power HEMTs. ECS Transactions, 2014, 64, 185-190.	0.3	17
66	Long range, non-destructive characterization of GaN substrates for power devices. Journal of Crystal Growth, 2019, 506, 178-184.	0.7	17
67	Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance. Review of Scientific Instruments, 2021, 92, 064906.	0.6	17
68	Optical and electrical characterization of AlGaN/GaN high electron mobility transistors irradiated with 5MeV protons. Journal of Crystal Growth, 2011, 326, 62-64.	0.7	16
69	Plasma-assisted atomic layer epitaxial growth of aluminum nitride studied with real time grazing angle small angle x-ray scattering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	16
70	Approach for dislocation free GaN epitaxy. Journal of Crystal Growth, 2010, 312, 3143-3146.	0.7	15
71	Selective switching of GaN polarity on Ga-polar GaN using atomic layer deposited Al ₂ O ₃ . Applied Physics Express, 2014, 7, 025502. Challenges to graphene growth on SiC(0.0.0 cmml math) Ti FLO20.0.0 rgBL (Overlock 10.15 50.82 Td (vmlness)	1.1 ml="http://	15 www.w3.org/
72		5.4	13

#	Article	IF	CITATIONS
73	Array of Two UV-Wavelength Detector Types. IEEE Transactions on Electron Devices, 2010, 57, 1224-1229.	1.6	12
74	Wet etching of non-polar gallium nitride light-emitting diode structure for enhanced light extraction. Journal of Crystal Growth, 2011, 326, 65-68.	0.7	12
75	Correlation of threading screw dislocation density to GaN 2â€ĐEG mobility. Electronics Letters, 2014, 50, 1722-1724.	0.5	12
76	Insulating gallium oxide layer produced by thermal oxidation of galliumâ€polar GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 565-568.	0.8	12
77	Electron Backscatter Diffraction Study of Hexagonal Boron Nitride Growth on Cu Single-Crystal Substrates. ACS Applied Materials & Interfaces, 2015, 7, 15200-15205.	4.0	12
78	GaN Power Devices – Current Status and Future Directions. Electrochemical Society Interface, 2018, 27, 43-47.	0.3	12
79	Polarity dependent implanted p-type dopant activation in GaN. Japanese Journal of Applied Physics, 2019, 58, SCCD07.	0.8	12
80	Exploiting Phononâ€Resonant Nearâ€Field Interaction for the Nanoscale Investigation of Extended Defects. Advanced Functional Materials, 2020, 30, 1907357.	7.8	12
81	(Invited) Nanocrystalline Diamond for Near Junction Heat Spreading in GaN Power HEMTs. ECS Transactions, 2014, 61, 45-49.	0.3	11
82	Homoepitaxial GaN micropillar array by plasma-free photo-enhanced metal-assisted chemical etching. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	11
83	Comparison of AlN encapsulants for high-temperature GaN annealing. Applied Physics Express, 2014, 7, 121003.	1.1	10
84	Site control of quantum emitters in gallium nitride by polarity. Applied Physics Letters, 2021, 118, .	1.5	10
85	High thermal conductivity and thermal boundary conductance of homoepitaxially grown gallium nitride (GaN) thin films. Physical Review Materials, 2021, 5, .	0.9	10
86	Electrical and structural characterizations of non-polar AlGaN/GaN heterostructures. Thin Solid Films, 2010, 518, 1747-1750.	0.8	9
87	Polarization and Space-Charge-Limited Current in III-Nitride Heterostructure Nanowires. IEEE Transactions on Electron Devices, 2011, 58, 3401-3406.	1.6	9
88	Gallium nitride light emitter on a patterned sapphire substrate for improved defectivity and light extraction efficiency. Current Applied Physics, 2011, 11, 682-686.	1.1	9
89	Degradation mechanisms of AlGaN/GaN HEMTs on sapphire, Si, and SiC substrates under proton irradiation. , 2014, , .		9
90	Thermal etching of nanocrystalline diamond films. Diamond and Related Materials, 2015, 59, 116-121.	1.8	9

#	Article	IF	CITATIONS
91	Electrochemically Prepared Polycrystalline Copper Surface for the Growth of Hexagonal Boron Nitride. Crystal Growth and Design, 2017, 17, 1669-1678.	1.4	9
92	Effect of Surface Morphology on Diode Performance in Vertical GaN Schottky Diodes. ECS Journal of Solid State Science and Technology, 2017, 6, S3103-S3105.	0.9	9
93	Defect Characterization of Multicycle Rapid Thermal Annealing Processed p-GaN for Vertical Power Devices. ECS Journal of Solid State Science and Technology, 2019, 8, P70-P76.	0.9	9
94	Post-annealing behavior of Ni/Au Schottky contact on non-polar a-plane GaN. Thin Solid Films, 2010, 518, 5810-5812.	0.8	8
95	Electroluminescence from ZnO nanoflowers/GaN thin film p-n heterojunction. Applied Physics Letters, 2010, 97, 082111.	1.5	8
96	Nanocrystalline Diamond for near Junction Heat Spreading in GaN Power HEMTs. , 2013, , .		8
97	Determination of GaN polarity on periodically oriented surfaces. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 011206.	0.6	8
98	Progress in periodically oriented III-nitride materials. Journal of Crystal Growth, 2016, 456, 133-136.	0.7	8
99	Effect of GaN Substrate Properties on Vertical GaN PiN Diode Electrical Performance. Journal of Electronic Materials, 2021, 50, 3013-3021.	1.0	8
100	Effects of proton irradiation on the magnetic properties of GaGdN and GaCrN. New Journal of Physics, 2008, 10, 055005.	1.2	7
101	Violet electroluminescence from p-GaN thin film/n-GaN nanowire homojunction. Applied Physics Letters, 2010, 96, 132105.	1.5	7
102	Vertical zinc oxide nanowires embedded in self-assembled photonic crystal. Photonics and Nanostructures - Fundamentals and Applications, 2011, 9, 91-94.	1.0	7
103	GaN Power Transistors with Integrated Thermal Management. ECS Transactions, 2013, 58, 279-286.	0.3	7
104	Role of growth parameters in equalizing simultaneous growth of N―and Gaâ€polar GaN by MOCVD. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 458-461.	0.8	7
105	Towards a polariton-based light emitter based on non-polar GaN quantum wells. Solid State Communications, 2009, 149, 2039-2042.	0.9	6
106	Nature of luminescence and strain in gallium nitride nanowires. Journal of Crystal Growth, 2009, 311, 2982-2986.	0.7	6
107	GaN single crystals of different habit grown from solution at near atmospheric pressure. Journal of Crystal Growth, 2010, 312, 2551-2557.	0.7	6
108	(Invited) Vertical GaN p-i-n Diodes Formed by Mg Ion Implantation. ECS Transactions, 2015, 69, 99-103.	0.3	6

#	Article	IF	CITATIONS
109	Dilute Magnetic III-N Semiconductors Based on Rare Earth Doping. ECS Journal of Solid State Science and Technology, 2019, 8, P527-P535.	0.9	6
110	Comparison of the physical, chemical and electrical properties of ALD Al2 O3 on c- and m- plane GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 898-901.	0.8	5
111	Ultra-Wide Bandgap Materials and Device. ECS Journal of Solid State Science and Technology, 2017, 6, Y1-Y1.	0.9	5
112	Frontiers in Electronics and Photonics. Electrochemical Society Interface, 2018, 27, 41-41.	0.3	5
113	Role of Capping Material and GaN Polarity on Mg Ion Implantation Activation. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900789.	0.8	5
114	Nitrogen-polar gallium nitride substrates as solid-state pH-selective potentiometric sensors. Applied Physics Letters, 2009, 95, 142501.	1.5	4
115	Photo-enhanced chemical etched GaN LED on silicon substrate. Journal of Crystal Growth, 2011, 326, 58-61.	0.7	4
116	(Invited) Failure Mechanisms in AlGaN/GaN HEMTs Irradiated with 2MeV Protons. ECS Transactions, 2015, 66, 15-20.	0.3	4
117	Frequency conversion in free-standing periodically oriented gallium nitride. Proceedings of SPIE, 2016,	0.8	4
118	Process Optimization for Selective Area Doping of GaN by Ion Implantation. Journal of Electronic Materials, 2021, 50, 4642-4649.	1.0	4
119	Single n-GaN microwire / p-Silicon thin film heterojunction light-emitting diode. Optics Express, 2011, 19, 21692.	1.7	3
120	Emission enhancement from nonpolar a-plane III-nitride nanopillar. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 021004.	0.6	3
121	Improved GaN-based HEMT performance by nanocrystalline diamond capping. , 2012, , .		3
122	Reliability of GaN HEMTs: Electrical and Radiation-Induced Failure Mechanism. ECS Transactions, 2013, 58, 221-225.	0.3	3
123	(Invited) From MRTA to SMRTA: Improvements in Activating Implanted Dopants in GaN. ECS Transactions, 2015, 69, 97-102.	0.3	3
124	Reduced Contact Resistance in GaN Using Selective Area Si Ion Implantation. IEEE Transactions on Semiconductor Manufacturing, 2019, 32, 478-482.	1.4	3
125	Assessment of the (010) β-Ga2O3 surface and substrate specification. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 013408.	0.9	3
126	(Invited) GaN Homoepitaxial Growth and Substrate-Dependent Effects for Vertical Power Devices. ECS Transactions, 2020, 98, 63-67.	0.3	3

#	ARTICLE	IF	CITATIONS
127	Controlled fabrication of gallium nitride nano- and micro-wires by dielectrophoretic force and torque. Current Applied Physics, 2010, 10, 703-707.	1.1	2
128	Quasi-Ballistic Hole Transport in an AlGaN/GaN Nanowire. ECS Transactions, 2010, 28, 47-52.	0.3	2
129	Techniques for the Dry Transfer of Epitaxial Graphene onto Arbitrary Substrates. Materials Science Forum, 2010, 645-648, 633-636.	0.3	2
130	Electrical and optical characterization of GaN micro-wires. Journal of Crystal Growth, 2011, 326, 81-84.	0.7	2
131	Observations on C-Face SiC Graphene Growth in Argon. Materials Science Forum, 2011, 679-680, 789-792.	0.3	2
132	<i>(Invited)</i> Understanding Interfaces in Homoepitaxial GaN Growth. ECS Transactions, 2018, 86, 15-19.	0.3	2
133	Characterization of erbium chloride seeded gallium nitride nanocrystals. Thin Solid Films, 2008, 517, 1111-1114.	0.8	1
134	(Invited) Techniques for the Dry Transfer of Epitaxial Graphene onto Arbitrary Substrates. ECS Transactions, 2010, 33, 177-186.	0.3	1
135	Dry Techniques for Epitaxial Graphene Transfer. Materials Research Society Symposia Proceedings, 2010, 1259, 1.	0.1	1
136	Temperature profiling in AlGaN/GaN HEMTs with nanocrystalline diamond heat spreading layers by Raman spectroscopy. , 2011, , .		1
137	Growth of 4H- and 3C-SiC Epitaxial Layers on 4H-SiC Step-Free Mesas. Materials Science Forum, 0, 679-680, 119-122.	0.3	1
138	Process optimization of multicycle rapid thermal annealing of Mg-implanted GaN. , 2014, , .		1
139	Illâ€nitride nanowire based light emitting diodes on carbon paper. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 442-445.	0.8	1
140	(Invited) Electrothermal Performance Optimization of III-Nitride HEMTs Capped with Nanocrystalline Diamond. ECS Transactions, 2016, 72, 3-8.	0.3	1
141	Atomic layer epitaxy for quantum well nitride-based devices. Proceedings of SPIE, 2016, , .	0.8	1
142	(Invited) Novel Implantation Processing and Characterization for Scalable GaN Power Devices. ECS Transactions, 2017, 80, 251-260.	0.3	1
143	Topside Nanocrystalline Diamond Integration on AlGaN/GaN HEMTs for High Temperature Operation. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2014, 2014, 1-6.	0.2	1

144 Vertical power devices enabled by bulk GaN substrates. , 2019, , .

1

#	Article	IF	CITATIONS
145	Ferromagnetic Properties of GaGdN Co-Doped with Si. ECS Transactions, 2006, 3, 409-414.	0.3	Ο
146	Magnetic and Optical Properties of Eu-doped GaN. Materials Research Society Symposia Proceedings, 2006, 955, 1.	0.1	0
147	Enhancement mode AlN/ultrathin AlGaN/GaN HEMTs using selective wet etching. , 2009, , .		Ο
148	Defect reduction via confined epitaxial growth of GaN. , 2009, , .		0
149	GHz devices from epitaxial graphene on SiC. , 2009, , .		Ο
150	Epitaxial graphene: dry transfer and materials characterization. Proceedings of SPIE, 2010, , .	0.8	0
151	Development of Enhancement Mode AlN/Ultrathin AlGaN/GaN HEMTs by Selective Wet Etching. ECS Transactions, 2010, 28, 65-70.	0.3	0
152	Effect of Temperature and Al Concentration on the Electrical Performance of GaN and Al _{0.2} Ga _{0.8} N Accumulation-Mode FET Devices. Materials Science Forum, 0, 645-648, 1215-1218.	0.3	0
153	Degradation of sub-micron gate AlGaN/GaN HEMTs due to reverse gate bias. , 2010, , .		0
154	Plasmonically enhanced emission from an inverted GaN light emitting diode. , 2011, , .		0
155	Space Charge Limited Current and Polarization in AlGaN/GaN Nanowires. ECS Transactions, 2011, 41, 33-38.	0.3	0
156	Development of Periodically Oriented Gallium Nitride. , 2012, , .		0
157	Nickel Foam as a Substrate for III-nitride Nanowire Growth. Materials Research Society Symposia Proceedings, 2013, 1538, 311-316.	0.1	0
158	Periodically Oriented Gallium Nitride: Materials Development. , 2014, , .		0
159	Allâ€epitaxial fabrication of a nanowire plasmon laser structure. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 754-757.	0.8	Ο
160	(Invited) Developing Periodically Oriented Gallium Nitride for Frequency Conversion. ECS Transactions, 2015, 66, 107-112.	0.3	0
161	Frequency Conversion in Periodically Oriented Gallium Nitride. , 2015, , .		0
162	Gd-doped III-nitride Dilute Magnetic Semiconductor Materials. , 2008, , .		0

10

0

#	Article	IF	CITATIONS
163	Periodically Oriented GaN for Optical Parametric Generation. , 2012, , .		0

164 Harmonic Generation in Periodically Oriented Gallium Nitride. , 2016, , .