
Simon L Girard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4353749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased exonic de novo mutation rate in individuals with schizophrenia. Nature Genetics, 2011, 43, 860-863.	21.4	392
2	High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies. American Journal of Human Genetics, 2017, 101, 664-685.	6.2	337
3	Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture. PLoS Genetics, 2013, 9, e1003864.	3.5	241
4	Exome Sequencing Identifies FUS Mutations as a Cause of Essential Tremor. American Journal of Human Genetics, 2012, 91, 313-319.	6.2	176
5	Mutations in <i>DCC</i> Cause Congenital Mirror Movements. Science, 2010, 328, 592-592.	12.6	161
6	Genome-wide association study of Tourette's syndrome. Molecular Psychiatry, 2013, 18, 721-728.	7.9	161
7	Deleterious mutations in the essential mRNA metabolism factor, hGle1, in amyotrophic lateral sclerosis. Human Molecular Genetics, 2015, 24, 1363-1373.	2.9	122
8	Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette's Syndrome and OCD. American Journal of Psychiatry, 2015, 172, 82-93.	7.2	117
9	Functional variants of POC5 identified in patients with idiopathic scoliosis. Journal of Clinical Investigation, 2015, 125, 1124-1128.	8.2	87
10	MEIS1 intronic risk haplotype associated with restless legs syndrome affects its mRNA and protein expression levels. Human Molecular Genetics, 2009, 18, 1065-1074.	2.9	85
11	Restless legs syndromeâ€associated <i>MEIS1</i> risk variant influences iron homeostasis. Annals of Neurology, 2011, 70, 170-175.	5.3	81
12	Genome-wide association study in essential tremor identifies three new loci. Brain, 2016, 139, 3163-3169.	7.6	78
13	De novo variants in sporadic cases of childhood onset schizophrenia. European Journal of Human Genetics, 2016, 24, 944-948.	2.8	77
14	Whole-Exome Sequencing Reveals a Rapid Change in the Frequency of Rare Functional Variants in a Founding Population of Humans. PLoS Genetics, 2013, 9, e1003815.	3.5	70
15	Rare coding variants in genes encoding GABAA receptors in genetic generalised epilepsies: an exome-based case-control study. Lancet Neurology, The, 2018, 17, 699-708.	10.2	67
16	Global characterization of copy number variants in epilepsy patients from whole genome sequencing. PLoS Genetics, 2018, 14, e1007285.	3.5	50
17	Autosomalâ€dominant locus for restless legs syndrome in Frenchâ€Canadians on chromosome 16p12.1. Movement Disorders, 2009, 24, 40-50.	3.9	44
18	Parkinson's Disease Genetic Loci in Rapid Eye Movement Sleep Behavior Disorder. Journal of Molecular Neuroscience. 2015. 56. 617-622.	2.3	42

SIMON L GIRARD

#	Article	IF	CITATIONS
19	Paternal Age Explains a Major Portion of De Novo Germline Mutation Rate Variability in Healthy Individuals. PLoS ONE, 2016, 11, e0164212.	2.5	41
20	Schizophrenia Genetics: Putting All the Pieces Together. Current Neurology and Neuroscience Reports, 2012, 12, 261-266.	4.2	37
21	Human copy number variants are enriched in regions of low mappability. Nucleic Acids Research, 2018, 46, 7236-7249.	14.5	36
22	Impact of Paternal Age at Conception on Human Health. Clinical Chemistry, 2019, 65, 146-152.	3.2	25
23	Where are the missing pieces of the schizophrenia genetics puzzle?. Current Opinion in Genetics and Development, 2011, 21, 310-316.	3.3	22
24	Comparison of Sequencing Based CNV Discovery Methods Using Monozygotic Twin Quartets. PLoS ONE, 2015, 10, e0122287.	2.5	22
25	Testing association of rare genetic variants with resistance to three common antiseizure medications. Epilepsia, 2020, 61, 657-666.	5.1	22
26	Whole genome sequencing and variant discovery in the ASPIRE autism spectrum disorder cohort. Clinical Genetics, 2019, 96, 199-206.	2.0	18
27	Mutation Burden of Rare Variants in Schizophrenia Candidate Genes. PLoS ONE, 2015, 10, e0128988.	2.5	17
28	Polygenic risk scores of several subtypes of epilepsies in a founder population. Neurology: Genetics, 2020, 6, e416.	1.9	17
29	Association of Essential Tremor With Novel Risk Loci. JAMA Neurology, 2022, 79, 185.	9.0	17
30	Assessing the role of rare genetic variants in drugâ€resistant, nonâ€lesional focal epilepsy. Annals of Clinical and Translational Neurology, 2021, 8, 1376-1387.	3.7	16
31	Investigation of rare variants in LRP1, KPNA1, ALS2CL and ZNF480 genes in schizophrenia patients reflects genetic heterogeneity of the disease. Behavioral and Brain Functions, 2013, 9, 9.	3.3	15
32	The role of the melanoma gene MC1R in Parkinson disease and REM sleep behavior disorder. Neurobiology of Aging, 2016, 43, 180.e7-180.e13.	3.1	12
33	Polygenic risk score for atopic dermatitis in the Canadian population. Journal of Allergy and Clinical Immunology, 2021, 147, 406-409.	2.9	12
34	The role of common genetic variation in presumed monogenic epilepsies. EBioMedicine, 2022, 81, 104098.	6.1	12
35	Genome-wide estimates of heritability and genetic correlations in essential tremor. Parkinsonism and Related Disorders, 2019, 64, 262-267.	2.2	10
36	Investigating the association and causal relationship between restless legs syndrome and essential tremor. Parkinsonism and Related Disorders, 2019, 61, 238-240.	2.2	9

SIMON L GIRARD

#	Article	IF	CITATIONS
37	Exome sequencing of sporadic childhoodâ€onset schizophrenia suggests the contribution of Xâ€linked genes in males. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2019, 180, 335-340.	1.7	8
38	Association of ultraâ€rare coding variants with genetic generalized epilepsy: A case–control whole exome sequencing study. Epilepsia, 2022, 63, 723-735.	5.1	8
39	No rare deleterious variants from <i>STK32B</i> , <i>PPARGC1A</i> , and <i>CTNNA3</i> are associated with essential tremor. Neurology: Genetics, 2017, 3, e195.	1.9	5
40	Genome-wide association study in FTD: divide to conquer. Lancet Neurology, The, 2014, 13, 643-644.	10.2	4
41	Assessment of burden and segregation profiles of <scp>CNVs</scp> in patients with epilepsy. Annals of Clinical and Translational Neurology, 2022, 9, 1050-1058.	3.7	2
42	How <i>de novo</i> mutation studies will change our view of the genetics of neurological and psychiatric disorders. Future Neurology, 2011, 6, 719-721.	0.5	0