Laurent Drouet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4353060/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Internalising health-economic impacts of air pollution into climate policy: a global modelling study. Lancet Planetary Health, The, 2022, 6, e40-e48.	11.4	35
2	Net economic benefits of well-below 2°C scenarios and associated uncertainties. Oxford Open Climate Change, 2022, 2, .	1.3	1
3	Air quality and health implications of 1.5 °C–2 °C climate pathways under considerations of ageing population: a multi-model scenario analysis. Environmental Research Letters, 2021, 16, 045005.	5.2	19
4	A Satisficing Framework for Environmental Policy Under Model Uncertainty. Environmental Modeling and Assessment, 2021, 26, 433-445.	2.2	2
5	Integrated assessment model diagnostics: key indicators and model evolution. Environmental Research Letters, 2021, 16, 054046.	5.2	36
6	Integrated perspective on translating biophysical to economic impacts of climate change. Nature Climate Change, 2021, 11, 563-572.	18.8	34
7	Energy system developments and investments in the decisive decade for the Paris Agreement goals. Environmental Research Letters, 2021, 16, 074020.	5.2	41
8	Meeting well-below 2°C target would increase energy sector jobs globally. One Earth, 2021, 4, 1026-1036.	6.8	44
9	Land-based implications of early climate actions without global net-negative emissions. Nature Sustainability, 2021, 4, 1052-1059.	23.7	27
10	Global roll-out of comprehensive policy measures may aid in bridging emissions gap. Nature Communications, 2021, 12, 6419.	12.8	37
11	Net zero-emission pathways reduce the physical and economic risks of climate change. Nature Climate Change, 2021, 11, 1070-1076.	18.8	39
12	Cost and attainability of meeting stringent climate targets without overshoot. Nature Climate Change, 2021, 11, 1063-1069.	18.8	102
13	Implications of various effort-sharing approaches for national carbon budgets and emission pathways. Climatic Change, 2020, 162, 1805-1822.	3.6	131
14	Taking some heat off the NDCs? The limited potential of additional short-lived climate forcers' mitigation. Climatic Change, 2020, 163, 1443-1461.	3.6	16
15	The role of methane in future climate strategies: mitigation potentials and climate impacts. Climatic Change, 2020, 163, 1409-1425.	3.6	39
16	Reply to "High energy and materials requirement for direct air capture calls for further analysis and R&D― Nature Communications, 2020, 11, 3286.	12.8	13
17	Impact of methane and black carbon mitigation on forcing and temperature: a multi-model scenario analysis. Climatic Change, 2020, 163, 1427-1442.	3.6	15
18	The Energy Modeling Forum (EMF)-30 study on short-lived climate forcers: introduction and overview. Climatic Change, 2020, 163, 1399-1408.	3.6	4

LAURENT DROUET

#	Article	IF	CITATIONS
19	Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nature Communications, 2020, 11, 2096.	12.8	241
20	Economy-wide effects of coastal flooding due to sea level rise: a multi-model simultaneous treatment of mitigation, adaptation, and residual impacts. Environmental Research Communications, 2020, 2, 015002.	2.3	28
21	An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nature Communications, 2019, 10, 3277.	12.8	267
22	The role of the discount rate for emission pathways and negative emissions. Environmental Research Letters, 2019, 14, 104008.	5.2	80
23	A multi-model assessment of food security implications of climate change mitigation. Nature Sustainability, 2019, 2, 386-396.	23.7	152
24	NeatWork: A Tool for the Design of Gravity-Driven Water Distribution Systems for Poor Rural Communities. Interfaces, 2019, 49, 129-136.	1.5	4
25	Building Risk into the Mitigation/Adaptation Decisions simulated by Integrated Assessment Models. Environmental and Resource Economics, 2019, 74, 1687-1721.	3.2	1
26	Contribution of the land sector to a 1.5 °C world. Nature Climate Change, 2019, 9, 817-828.	18.8	301
27	Looking under the hood: A comparison of techno-economic assumptions across national and global integrated assessment models. Energy, 2019, 172, 1254-1267.	8.8	107
28	Scenarios towards limiting global mean temperature increase below 1.5 °C. Nature Climate Change, 2018, 8, 325-332.	18.8	795
29	Enhancing global climate policy ambition towards a 1.5 °C stabilization: a short-term multi-model assessment. Environmental Research Letters, 2018, 13, 044039.	5.2	60
30	Water demand for electricity in deep decarbonisation scenarios: a multi-model assessment. Climatic Change, 2018, 147, 91-106.	3.6	16
31	Country-level social cost of carbon. Nature Climate Change, 2018, 8, 895-900.	18.8	479
32	Future Clobal Air Quality Indices under Different Socioeconomic and Climate Assumptions. Sustainability, 2018, 10, 3645.	3.2	17
33	Residual fossil CO2 emissions in 1.5–2 °C pathways. Nature Climate Change, 2018, 8, 626-633.	18.8	380
34	Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nature Energy, 2018, 3, 589-599.	39.5	377
35	Low-emission pathways in 11 major economies: comparison of cost-optimal pathways and Paris climate proposals. Climatic Change, 2017, 142, 491-504.	3.6	41
36	Future air pollution in the Shared Socio-economic Pathways. Global Environmental Change, 2017, 42, 346-358.	7.8	277

LAURENT DROUET

#	Article	IF	CITATIONS
37	Shared Socio-Economic Pathways of the Energy Sector – Quantifying the Narratives. Global Environmental Change, 2017, 42, 316-330.	7.8	247
38	The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 2017, 42, 153-168.	7.8	2,966
39	Assessing the Feasibility of Global Long-Term Mitigation Scenarios. Energies, 2017, 10, 89.	3.1	51
40	Building Uncertainty into the Adaptation Cost Estimation in Integrated Assessment Models. SSRN Electronic Journal, 2016, , .	0.4	0
41	Climate policy under socio-economic scenario uncertainty. Environmental Modelling and Software, 2016, 79, 334-342.	4.5	9
42	Setting the System Boundaries of "Energy for Water―for Integrated Modeling. Environmental Science & Technology, 2016, 50, 8930-8931.	10.0	12
43	A multi-model assessment of the co-benefits of climate mitigation for global air quality. Environmental Research Letters, 2016, 11, 124013.	5.2	72
44	Cheap oil slows climate mitigation. Nature Climate Change, 2016, 6, 660-661.	18.8	1
45	Combination of equilibrium models and hybrid life cycle - input–output analysis to predict the environmental impacts of energy policy scenarios. Applied Energy, 2015, 145, 234-245.	10.1	95
46	Selection of climate policies under the uncertainties in the Fifth Assessment Report of the IPCC. Nature Climate Change, 2015, 5, 937-940.	18.8	67
47	Integrated environmental assessment of future energy scenarios based on economic equilibrium models. Metallurgical Research and Technology, 2014, 111, 179-189.	0.7	6
48	Delineating spring recharge areas in a fractured sandstone aquifer (Luxembourg) based on pesticide mass balance. Hydrogeology Journal, 2013, 21, 799-812.	2.1	10
49	Integrated Assessment of Swiss GHG Mitigation Policies After 2012. Environmental Modeling and Assessment, 2012, 17, 193-207.	2.2	2
50	Trade-offs between energy cost and health impact in a regional coupled energy–air quality model: the LEAQ model. Environmental Research Letters, 2011, 6, 024021.	5.2	12
51	Trade-offs and performances of a range of alternative global climate architectures for post-2012. Environmental Science and Policy, 2010, 13, 63-71.	4.9	14
52	An oracle based method to compute a coupled equilibrium in a model of international climate policy. Computational Management Science, 2008, 5, 119-140.	1.3	28
53	Coupling climate and economic models in a cost-benefit framework: A convex optimisation approach. Environmental Modeling and Assessment, 2006, 11, 101-114.	2.2	11
54	The coupling of optimal economic growth and climate dynamics. Climatic Change, 2006, 79, 103-119.	3.6	16

LAURENT DROUET

#	Article	IF	CITATIONS
55	A Coupled Bottom-Up/Top-Down Model for GHG Abatement Scenarios in the Swiss Housing Sector. , 2005, , 27-61.		16
56	Assessment of the Effectiveness of Global Climate Policies Using Coupled Bottom-Up and Top-Down Models. SSRN Electronic Journal, 0, , .	0.4	8
57	The WITCH 2016 Model - Documentation and Implementation of the Shared Socioeconomic Pathways. SSRN Electronic Journal, 0, , .	0.4	37
58	Integrated Environmental Assessment of Future Energy Scenarios Based on Economic Equilibrium Models. SSRN Electronic Journal, 0, , .	0.4	3
59	Regional Low-Emission Pathways from Global Models. SSRN Electronic Journal, 0, , .	0.4	1
60	Challenges and Opportunities for Integrated Modeling of Climate Engineering. SSRN Electronic Journal, 0, , .	0.4	4
61	Accounting for Uncertainty Affecting Technical Change in an Economic-Climate Model. SSRN Electronic Journal, 0, , .	0.4	6
62	Combination of Equilibrium Models and Hybrid Life Cycle Input-Output Analysis to Predict the	0.4	0

Environmental Impacts of Energy Policy Scenarios. SSRN Electronic Journal, 0, , . 62