Laurent Drouet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4353060/publications.pdf

Version: 2024-02-01

62 7,977 29 55
papers citations h-index g-index

71 71 71 8089
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 2017, 42, 153-168.	7.8	2,966
2	Scenarios towards limiting global mean temperature increase below 1.5 ${\hat {\sf A}}^{\sf o}{\sf C}$. Nature Climate Change, 2018, 8, 325-332.	18.8	795
3	Country-level social cost of carbon. Nature Climate Change, 2018, 8, 895-900.	18.8	479
4	Residual fossil CO2 emissions in 1.5–2 °C pathways. Nature Climate Change, 2018, 8, 626-633.	18.8	380
5	Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nature Energy, 2018, 3, 589-599.	39.5	377
6	Contribution of the land sector to a 1.5 °C world. Nature Climate Change, 2019, 9, 817-828.	18.8	301
7	Future air pollution in the Shared Socio-economic Pathways. Global Environmental Change, 2017, 42, 346-358.	7.8	277
8	An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nature Communications, 2019, 10, 3277.	12.8	267
9	Shared Socio-Economic Pathways of the Energy Sector – Quantifying the Narratives. Global Environmental Change, 2017, 42, 316-330.	7.8	247
10	Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nature Communications, 2020, 11, 2096.	12.8	241
11	A multi-model assessment of food security implications of climate change mitigation. Nature Sustainability, 2019, 2, 386-396.	23.7	152
12	Implications of various effort-sharing approaches for national carbon budgets and emission pathways. Climatic Change, 2020, 162, 1805-1822.	3 . 6	131
13	Looking under the hood: A comparison of techno-economic assumptions across national and global integrated assessment models. Energy, 2019, 172, 1254-1267.	8.8	107
14	Cost and attainability of meeting stringent climate targets without overshoot. Nature Climate Change, 2021, 11, 1063-1069.	18.8	102
15	Combination of equilibrium models and hybrid life cycle - input–output analysis to predict the environmental impacts of energy policy scenarios. Applied Energy, 2015, 145, 234-245.	10.1	95
16	The role of the discount rate for emission pathways and negative emissions. Environmental Research Letters, 2019, 14, 104008.	5 . 2	80
17	A multi-model assessment of the co-benefits of climate mitigation for global air quality. Environmental Research Letters, 2016, 11, 124013.	5. 2	72
18	Selection of climate policies under the uncertainties in the Fifth Assessment Report of the IPCC. Nature Climate Change, 2015, 5, 937-940.	18.8	67

#	Article	IF	Citations
19	Enhancing global climate policy ambition towards a 1.5 °C stabilization: a short-term multi-model assessment. Environmental Research Letters, 2018, 13, 044039.	5.2	60
20	Assessing the Feasibility of Global Long-Term Mitigation Scenarios. Energies, 2017, 10, 89.	3.1	51
21	Meeting well-below 2°C target would increase energy sector jobs globally. One Earth, 2021, 4, 1026-1036.	6.8	44
22	Low-emission pathways in 11 major economies: comparison of cost-optimal pathways and Paris climate proposals. Climatic Change, 2017, 142, 491-504.	3.6	41
23	Energy system developments and investments in the decisive decade for the Paris Agreement goals. Environmental Research Letters, 2021, 16, 074020.	5. 2	41
24	The role of methane in future climate strategies: mitigation potentials and climate impacts. Climatic Change, 2020, 163, 1409-1425.	3.6	39
25	Net zero-emission pathways reduce the physical and economic risks of climate change. Nature Climate Change, 2021, 11, 1070-1076.	18.8	39
26	The WITCH 2016 Model - Documentation and Implementation of the Shared Socioeconomic Pathways. SSRN Electronic Journal, 0, , .	0.4	37
27	Global roll-out of comprehensive policy measures may aid in bridging emissions gap. Nature Communications, 2021, 12, 6419.	12.8	37
28	Integrated assessment model diagnostics: key indicators and model evolution. Environmental Research Letters, 2021, 16, 054046.	5.2	36
29	Internalising health-economic impacts of air pollution into climate policy: a global modelling study. Lancet Planetary Health, The, 2022, 6, e40-e48.	11.4	35
30	Integrated perspective on translating biophysical to economic impacts of climate change. Nature Climate Change, 2021, 11, 563-572.	18.8	34
31	An oracle based method to compute a coupled equilibrium in a model of international climate policy. Computational Management Science, 2008, 5, 119-140.	1.3	28
32	Economy-wide effects of coastal flooding due to sea level rise: a multi-model simultaneous treatment of mitigation, adaptation, and residual impacts. Environmental Research Communications, 2020, 2, 015002.	2.3	28
33	Land-based implications of early climate actions without global net-negative emissions. Nature Sustainability, 2021, 4, 1052-1059.	23.7	27
34	Air quality and health implications of 1.5 °C–2 °C climate pathways under considerations of ageing population: a multi-model scenario analysis. Environmental Research Letters, 2021, 16, 045005.	5.2	19
35	Future Global Air Quality Indices under Different Socioeconomic and Climate Assumptions. Sustainability, 2018, 10, 3645.	3.2	17
36	A Coupled Bottom-Up/Top-Down Model for GHG Abatement Scenarios in the Swiss Housing Sector. , 2005, , 27-61.		16

#	Article	IF	CITATIONS
37	The coupling of optimal economic growth and climate dynamics. Climatic Change, 2006, 79, 103-119.	3.6	16
38	Water demand for electricity in deep decarbonisation scenarios: a multi-model assessment. Climatic Change, 2018, 147, 91-106.	3.6	16
39	Taking some heat off the NDCs? The limited potential of additional short-lived climate forcers' mitigation. Climatic Change, 2020, 163, 1443-1461.	3.6	16
40	Impact of methane and black carbon mitigation on forcing and temperature: a multi-model scenario analysis. Climatic Change, 2020, 163, 1427-1442.	3.6	15
41	Trade-offs and performances of a range of alternative global climate architectures for post-2012. Environmental Science and Policy, 2010, 13, 63-71.	4.9	14
42	Reply to "High energy and materials requirement for direct air capture calls for further analysis and R&D― Nature Communications, 2020, 11, 3286.	12.8	13
43	Trade-offs between energy cost and health impact in a regional coupled energy–air quality model: the LEAQ model. Environmental Research Letters, 2011, 6, 024021.	5.2	12
44	Setting the System Boundaries of "Energy for Water―for Integrated Modeling. Environmental Science & Longon Rechnology, 2016, 50, 8930-8931.	10.0	12
45	Coupling climate and economic models in a cost-benefit framework: A convex optimisation approach. Environmental Modeling and Assessment, 2006, 11, 101-114.	2.2	11
46	Delineating spring recharge areas in a fractured sandstone aquifer (Luxembourg) based on pesticide mass balance. Hydrogeology Journal, 2013, 21, 799-812.	2.1	10
47	Climate policy under socio-economic scenario uncertainty. Environmental Modelling and Software, 2016, 79, 334-342.	4.5	9
48	Assessment of the Effectiveness of Global Climate Policies Using Coupled Bottom-Up and Top-Down Models. SSRN Electronic Journal, 0, , .	0.4	8
49	Integrated environmental assessment of future energy scenarios based on economic equilibrium models. Metallurgical Research and Technology, 2014, 111, 179-189.	0.7	6
50	Accounting for Uncertainty Affecting Technical Change in an Economic-Climate Model. SSRN Electronic Journal, 0, , .	0.4	6
51	NeatWork: A Tool for the Design of Gravity-Driven Water Distribution Systems for Poor Rural Communities. Interfaces, 2019, 49, 129-136.	1.5	4
52	The Energy Modeling Forum (EMF)-30 study on short-lived climate forcers: introduction and overview. Climatic Change, 2020, 163, 1399-1408.	3.6	4
53	Challenges and Opportunities for Integrated Modeling of Climate Engineering. SSRN Electronic Journal, 0, , .	0.4	4
54	Integrated Environmental Assessment of Future Energy Scenarios Based on Economic Equilibrium Models. SSRN Electronic Journal, 0, , .	0.4	3

#	Article	IF	CITATIONS
55	Integrated Assessment of Swiss GHG Mitigation Policies After 2012. Environmental Modeling and Assessment, 2012, 17, 193-207.	2.2	2
56	A Satisficing Framework for Environmental Policy Under Model Uncertainty. Environmental Modeling and Assessment, 2021, 26, 433-445.	2.2	2
57	Cheap oil slows climate mitigation. Nature Climate Change, 2016, 6, 660-661.	18.8	1
58	Building Risk into the Mitigation/Adaptation Decisions simulated by Integrated Assessment Models. Environmental and Resource Economics, 2019, 74, 1687-1721.	3.2	1
59	Regional Low-Emission Pathways from Global Models. SSRN Electronic Journal, 0, , .	0.4	1
60	Net economic benefits of well-below $2\hat{A}^{\circ}C$ scenarios and associated uncertainties. Oxford Open Climate Change, 2022, 2, .	1.3	1
61	Building Uncertainty into the Adaptation Cost Estimation in Integrated Assessment Models. SSRN Electronic Journal, 2016, , .	0.4	0
62	Combination of Equilibrium Models and Hybrid Life Cycle Input-Output Analysis to Predict the Environmental Impacts of Energy Policy Scenarios. SSRN Electronic Journal, 0, , .	0.4	0