Antonino La Magna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4352954/publications.pdf

Version: 2024-02-01

206 papers

3,552 citations

30 h-index 214800 47 g-index

208 all docs 208
docs citations

208 times ranked

4174 citing authors

#	Article	IF	CITATIONS
1	Design and characterization of effective solar cells. Energy Systems, 2022, 13, 355-382.	3.0	4
2	An Experimental Evaluation of Resistive Defects and Different Testing Solutions in Low-Power Back-Biased SRAM Cells. Electronics (Switzerland), 2022, 11, 203.	3.1	1
3	Early Stages of Aluminum-Doped Zinc Oxide Growth on Silicon Nanowires. Nanomaterials, 2022, 12, 772.	4.1	1
4	Multiscale modeling of ultrafast melting phenomena. Npj Computational Materials, 2022, 8, .	8.7	10
5	Blackâ€Yellow Bandgap Tradeâ€Off During Thermal Stability Tests in Lowâ€Temperature Euâ€Doped CsPbl ₃ . Solar Rrl, 2022, 6, .	5.8	8
6	High aspect ratio tilted gratings through local electric field modulation in plasma etching. Applied Surface Science, 2022, 588, 152938.	6.1	9
7	Outâ€ofâ€Glovebox Integration of Recyclable Europiumâ€Doped CsPbl ₃ in Tripleâ€Mesoscopic Carbonâ€Based Solar Cells Exceeding 9% Efficiency. Solar Rrl, 2022, 6, .	5.8	9
8	Reliable evaluation method for interface state density and effective channel mobility in lateral 4H-SiC MOSFETs. Semiconductor Science and Technology, 2022, 37, 085010.	2.0	0
9	Inter-diffusion, melting and reaction interplay in Ni/4H-SiC under excimer laser annealing. Applied Surface Science, 2021, 539, 148218.	6.1	7
10	Two-step MAPbl ₃ deposition by low-vacuum proximity-space-effusion for high-efficiency inverted semitransparent perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 16456-16469.	10.3	25
11	Continuum modeling and TCAD simulations of laser-related phenomena in CMOS applications. , 2021, , 251-291.		0
12	CsPbBr ₃ , MAPbBr ₃ , and FAPbBr ₃ Bromide Perovskite Single Crystals: Interband Critical Points under Dry N ₂ and Optical Degradation under Humid Air. Journal of Physical Chemistry C, 2021, 125, 4938-4945.	3.1	26
13	Optical behaviour of \hat{I}^3 -black CsPbI ₃ phases formed by quenching from 80 \hat{A}° C and 325 \hat{A}° C. JPhys Materials, 2021, 4, 034011.	4.2	6
14	Formation of CsPbI ₃ î³â€Phase at 80 °C by Europiumâ€Assisted Snowplow Effect. Advanced Energy and Sustainability Research, 2021, 2, 2100091.	5.8	8
15	Exploring the Structural Competition between the Black and the Yellow Phase of CsPbI3. Nanomaterials, 2021, 11, 1282.	4.1	12
16	Structural Characterization and Adsorption Properties of Dunino Raw Halloysite Mineral for Dye Removal from Water. Materials, 2021, 14, 3676.	2.9	16
17	Study of the Molecule Adsorption Process during the Molecular Doping. Nanomaterials, 2021, 11, 1899.	4.1	1
18	Ni Schottky barrier on heavily doped phosphorous implanted 4H-SiC. Journal Physics D: Applied Physics, 2021, 54, 445107.	2.8	12

#	Article	IF	CITATIONS
19	Simulations of the Ultra-Fast Kinetics in Ni-Si-C Ternary Systems under Laser Irradiation. Materials, 2021, 14, 4769.	2.9	6
20	MAPbl3 Deposition by LV-PSE on TiO2 for Photovoltaic Application. Frontiers in Electronics, 2021, 2, .	3.2	1
21	New Approaches and Understandings in the Growth of Cubic Silicon Carbide. Materials, 2021, 14, 5348.	2.9	34
22	Surface Plasmons in Silicon Nanowires. Advanced Photonics Research, 2021, 2, 2100130.	3.6	3
23	Molecular dynamics simulations supporting the development of a continuum model of heat transport in nanowires. , $2021, \ldots$		1
24	Extensive Fermiâ€Level Engineering for Graphene through the Interaction with Aluminum Nitrides and Oxides. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900399.	2.4	5
25	Ni/4H-SiC interaction and silicide formation under excimer laser annealing for ohmic contact. Materialia, 2020, 9, 100528.	2.7	12
26	TiO ₂ Colloids Laser-Treated in Ethanol for Photocatalytic H ₂ Production. ACS Applied Nano Materials, 2020, 3, 9127-9140.	5.0	14
27	Improved Electrical and Structural Stability in HTL-Free Perovskite Solar Cells by Vacuum Curing Treatment. Energies, 2020, 13, 3953.	3.1	7
28	Temperature-Dependent Optical Band Gap in CsPbBr ₃ , MAPbBr ₃ , and FAPbBr ₃ Single Crystals. Journal of Physical Chemistry Letters, 2020, 11, 2490-2496.	4.6	173
29	Generation and Termination of Stacking Faults by Inverted Domain Boundaries in 3C-SiC. Crystal Growth and Design, 2020, 20, 3104-3111.	3.0	14
30	Impact of Stacking Faults and Domain Boundaries on the Electronic Transport in Cubic Silicon Carbide Probed by Conductive Atomic Force Microscopy. Advanced Electronic Materials, 2020, 6, 1901171.	5.1	25
31	Local Order and Rotational Dynamics in Mixed A-Cation Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 1068-1074.	4.6	31
32	Genesis and evolution of extended defects: The role of evolving interface instabilities in cubic SiC. Applied Physics Reviews, 2020, 7, 021402.	11.3	35
33	Full Efficiency Recovery in Hole-Transporting Layer-Free Perovskite Solar Cells With Free-Standing Dry-Carbon Top-Contacts. Frontiers in Chemistry, 2020, 8, 200.	3.6	8
34	Phononic transport and simulations of annealing processes in nanometric complex structures. Physical Review Materials, 2020, 4, .	2.4	5
35	10.1063/1.5132300.1., 2020,,.		0
36	Advanced simulations on laser annealing: explosive crystallization and phonon transport corrections., 2020,,.		2

#	Article	IF	CITATIONS
37	Nanostructured TiO ₂ Grown by Low-Temperature Reactive Sputtering for Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 6218-6229.	5.1	27
38	High-Performance Graphene/AlGaN/GaN Schottky Junctions for Hot Electron Transistors. ACS Applied Electronic Materials, 2019, 1, 2342-2354.	4.3	35
39	Bimodal Porosity and Stability of a TiO2 Gig-Lox Sponge Infiltrated with Methyl-Ammonium Lead Iodide Perovskite. Nanomaterials, 2019, 9, 1300.	4.1	7
40	Study on the Physico-Chemical Properties of the Si Nanowires Surface. Nanomaterials, 2019, 9, 818.	4.1	7
41	Pb clustering and PbI2 nanofragmentation during methylammonium lead iodide perovskite degradation. Nature Communications, 2019, 10, 2196.	12.8	116
42	Seedâ€Layerâ€Free Atomic Layer Deposition of Highly Uniform Al ₂ O ₃ Thin Films onto Monolayer Epitaxial Graphene on Silicon Carbide. Advanced Materials Interfaces, 2019, 6, 1900097.	3.7	24
43	Porous Gig-Lox TiO2 Doped with N2 at Room Temperature for P-Type Response to Ethanol. Chemosensors, 2019, 7, 12.	3.6	4
44	Direct observation of single organic molecules grafted on the surface of a silicon nanowire. Scientific Reports, 2019, 9, 5647.	3.3	10
45	Nitrogen doped spongy TiO2 layers for sensors application. Materials Science in Semiconductor Processing, 2019, 98, 44-48.	4.0	8
46	Selfâ€Assembling of Block Copolymers with Alternative Solvents. Macromolecular Chemistry and Physics, 2019, 220, 1800523.	2.2	0
47	Nitrogen Soaking Promotes Lattice Recovery inÂPolycrystalline Hybrid Perovskites. Advanced Energy Materials, 2019, 9, 1803450.	19.5	46
48	Tailoring Active Defect Centers During the Growth of Group IV Crystals. Proceedings (mdpi), 2019, 12, 32.	0.2	0
49	Surface segregated Ga, In, and Al activation in high Ge content SiGe during UV melt laser induced non-equilibrium solidification. Japanese Journal of Applied Physics, 2019, 58, 120911.	1.5	7
50	3C-SiC Growth on Inverted Silicon Pyramids Patterned Substrate. Materials, 2019, 12, 3407.	2.9	12
51	Chemical Vapor Deposition Growth of Silicon Nanowires with Diameter Smaller Than 5 nm. ACS Omega, 2019, 4, 17967-17971.	3.5	42
52	Simulation of the Growth Kinetics in Group IV Compound Semiconductors. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800597.	1.8	6
53	Phase field model of the nanoscale evolution during the explosive crystallization phenomenon. Journal of Applied Physics, 2018, 123, .	2.5	28
54	Enhancing quantum efficiency of thin-film silicon solar cells by Pareto optimality. Journal of Global Optimization, 2018, 72, 491-515.	1.8	3

#	Article	IF	CITATIONS
55	Transparent conductive polymer obtained by in-solution doping of PEDOT:PSS. Polymer, 2018, 155, 199-207.	3.8	10
56	Stability and Degradation in Hybrid Perovskites: Is the Glass Half-Empty or Half-Full?. Journal of Physical Chemistry Letters, 2018, 9, 3000-3007.	4.6	102
57	Electron trapping at SiO ₂ /4H-SiC interface probed by transient capacitance measurements and atomic resolution chemical analysis. Nanotechnology, 2018, 29, 395702.	2.6	22
58	3C-SiĐ¡ Hetero-Epitaxially Grown on Silicon Compliance Substrates and New 3C-SiĐ¡ Substrates for Sustainable Wide-Band-Gap Power Devices (CHALLENGE). Materials Science Forum, 2018, 924, 913-918.	0.3	12
59	Exploring the orthorhombic–tetragonal phase transition in CH3NH3PbI3: the role of atom kinetics. Nanoscale, 2017, 9, 5896-5903.	5.6	22
60	Revealing a Discontinuity in the Degradation Behavior of CH ₃ NH ₃ Pbl ₃ during Thermal Operation. Journal of Physical Chemistry C, 2017, 121, 13577-13585.	3.1	37
61	Ambipolar MoS ₂ Transistors by Nanoscale Tailoring of Schottky Barrier Using Oxygen Plasma Functionalization. ACS Applied Materials & Enterfaces, 2017, 9, 23164-23174.	8.0	81
62	First Evidence of CH ₃ NH ₃ Pbl ₃ Optical Constants Improvement in a N ₂ Environment in the Range 40–80 °C. Journal of Physical Chemistry C, 2017, 121, 7703-7710.	3.1	49
63	Pervasive infiltration and multi-branch chemisorption of N-719 molecules into newly designed spongy TiO ₂ layers deposited by gig-lox sputtering processes. Journal of Materials Chemistry A, 2017, 5, 25529-25538.	10.3	12
64	Ultrafast Generation of Unconventional <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:mn>001</mml:mn><mml:mo stretchy="false">}</mml:mo></mml:mrow></mml:math> Loops in Si. Physical Review Letters, 2017, 119,	7.8	6
65	205503. Atom by Atom Simulations of Nanomaterial Manipulation: The Plasma Etching Case. IEEE Nanotechnology Magazine, 2017, 16, 790-797.	2.0	2
66	Multi-objective optimization and analysis for the design space exploration of analog circuits and solar cells. Engineering Applications of Artificial Intelligence, 2017, 62, 373-383.	8.1	6
67	In-situ monitoring by Raman spectroscopy of the thermal doping of graphene and MoS ₂ in O ₂ -controlled atmosphere. Beilstein Journal of Nanotechnology, 2017, 8, 418-424.	2.8	13
68	Controlled Al3+ Incorporation in the ZnO Lattice at $188~\hat{A}^{\circ}\text{C}$ by Soft Reactive Co-Sputtering for Transparent Conductive Oxides. Energies, 2016, 9, 433.	3.1	9
69	Atom by atom simulations of nano-materials processing. , 2016, , .		0
70	The Interaction between Graphene and the SiC Substrate: <i>Ab Initio</i> Calculations for Polar and Nonpolar Surfaces. Materials Science Forum, 2016, 858, 1125-1128.	0.3	0
71	Analysis of the role of elution buffers on the separation capabilities of dielectrophoretic devices. Sensing and Bio-Sensing Research, 2016, 7, 162-167.	4.2	7
72	Stability of solution-processed MAPbl ₃ and FAPbl ₃ layers. Physical Chemistry Chemical Physics, 2016, 18, 13413-13422.	2.8	208

#	Article	IF	CITATIONS
73	Substrate and atmosphere influence on oxygen p-doped graphene. Carbon, 2016, 107, 696-704.	10.3	15
74	From PbI ₂ to MAPbI ₃ through Layered Intermediates. Journal of Physical Chemistry C, 2016, 120, 19768-19777.	3.1	26
75	Elution time changes due to anomalous DEP effects in microchannels under uniform and non-uniform electric fields. Sensing and Bio-Sensing Research, 2016, 8, 59-64.	4.2	1
76	Silicon doped by molecular doping technique: Role of the surface layers of doped Si on the electrical characteristics. Materials Science in Semiconductor Processing, 2016, 42, 200-203.	4.0	17
77	A comprehensive study on the physicochemical and electrical properties of Si doped with the molecular doping method. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1685-1694.	1.8	13
78	Similar Structural Dynamics for the Degradation of CH ₃ NH ₃ PbI ₃ in Air and in Vacuum. ChemPhysChem, 2015, 16, 3064-3071.	2.1	80
79	Analysis of the role of the particle–wall interaction on the separation efficiencies of field flow fractionation dielectrophoretic devices. Electrophoresis, 2015, 36, 1396-1404.	2.4	16
80	Fluorocarbon Chemistry: A 0-Dimensional Model for Oxide and Nitride Dry Etching. IEEE Transactions on Semiconductor Manufacturing, 2015, 28, 337-344.	1.7	3
81	Texture of MAPbI ₃ Layers Assisted by Chloride on Flat TiO ₂ Substrates. Journal of Physical Chemistry C, 2015, 119, 19808-19816.	3.1	36
82	Monte Carlo Study of the early Growth Stages of 3C-SiC on Misoriented <11-20> and <1-100> 6H-SiC Substrates: Role of Step-Island Interaction. Materials Science Forum, 2015, 821-823, 201-204.	0.3	2
83	Molecular doping applied to Si nanowires array based solar cells. Solar Energy Materials and Solar Cells, 2015, 132, 118-122.	6.2	37
84	Monte Carlo Study of the Early Growth Stages of 3C-SiC on Misoriented and 6H-Sic Substrates. Materials Science Forum, 2014, 778-780, 238-242.	0.3	2
85	Atomic scale Monte Carlo simulations of BF ₃ plasma immersion ion implantation in Si. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 109-112.	0.8	2
86	Extended Defects Formation in Nanosecond Laser-Annealed Ion Implanted Silicon. Nano Letters, 2014, 14, 1769-1775.	9.1	40
87	Kinetic Monte Carlo simulations of boron activation in implanted Si under laser thermal annealing. Applied Physics Express, 2014, 7, 021301.	2.4	14
88	Role of the early stages of Ni-Si interaction on the formation of transrotational Ni-silicides. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 164-168.	0.8	2
89	Observation of layer by layer graphitization of 4H-SiC, through atomic-EELS at low energy. Microscopy and Microanalysis, 2014, 20, 560-561.	0.4	0
90	Role of the early stages of Ni-Si interaction on the structural properties of the reaction products. Journal of Applied Physics, 2013, 114, .	2.5	24

#	Article	IF	CITATIONS
91	Study of the Anchoring Process of Tethered Unsymmetrical Zn-Phthalocyanines on TiO ₂ Nanostructured Thin Films. Journal of Physical Chemistry C, 2013, 117, 11176-11185.	3.1	22
92	Delaminated Graphene at Silicon Carbide Facets: Atomic Scale Imaging and Spectroscopy. ACS Nano, 2013, 7, 3045-3052.	14.6	73
93	Stress nature investigation on heteroepitaxial 3C–SiC film on (100) Si substrates. Journal of Materials Research, 2013, 28, 129-135.	2.6	6
94	Correlation between macroscopic and microscopic stress fields: Application to the 3C–SiC/Si heteroepitaxy. Journal of Materials Research, 2013, 28, 104-112.	2.6	5
95	Process simulation of hydrogen intercalation in epitaxial graphene on SiC(0001). Physica Status Solidi (B): Basic Research, 2013, 250, 1478-1482.	1.5	4
96	Nanofabrication processes for innovative nanohole-based solar cells. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1564-1570.	1.8	10
97	Consideration on the Thermal Expansion of 3C-SiC Epitaxial Layer on Si Substrates. Materials Science Forum, 2012, 711, 31-34.	0.3	1
98	Study of the Impact of Growth and Post-Growth Processes on the Surface Morphology of 4H Silicon Carbide Films. Materials Science Forum, 2012, 717-720, 149-152.	0.3	2
99	Strain Field Analysis of 3C-SiC Free-Standing Microstructures by Micro-Raman and Theoretical Modelling. Materials Science Forum, 2012, 711, 55-60.	0.3	3
100	Study of microstructure deflections and film/substrate curvature under generalized stress fields and mechanical properties. Thin Solid Films, 2012, 522, 26-29.	1.8	7
101	A numerical method for the efficient atomistic simulation of the plasma-etch of nano-patterned structures. Computational Materials Science, 2012, 54, 227-235.	3.0	9
102	Study of the connection between stacking faults evolution and step kinetics in misoriented 4H-SiC epitaxial growths. Surface Science, 2011, 605, L67-L69.	1.9	9
103	Schottky Barrier Inhomogeneities in Nickel Silicide Transrotational Contacts. Applied Physics Express, 2011, 4, 115701.	2.4	7
104	Coherent electron transport in quasi one-dimensional carbon-based systems. European Physical Journal B, 2011, 81, 15-36.	1.5	13
105	Ion beam induced defects in graphene: Raman spectroscopy and DFT calculations. Journal of Molecular Structure, 2011, 993, 506-509.	3.6	25
106	Theoretical study of the role of metallic contacts in probing transport features of pure and defected graphene nanoribbons. Nanoscale Research Letters, 2011, 6, 234.	5 . 7	8
107	Evolution of Extended Defects during Epitaxial Growths: A Monte Carlo Study. Materials Science Forum, 2011, 679-680, 48-54.	0.3	1
108	3C-SiC Film Growth on Si Substrates. ECS Transactions, 2011, 35, 99-116.	0.5	32

#	Article	IF	Citations
109	<i>Ab Initio</i> Study of Ge Intercalation in Epitaxial Graphene on SiC(0001). Applied Physics Express, 2011, 4, 125101.	2.4	10
110	Multiscale simulation for epitaxial silicon carbide growth by chlorides route. Thin Solid Films, 2010, 518, S6-S11.	1.8	3
111	Extended study of the step-bunching mechanism during the homoepitaxial growth of SiC. Thin Solid Films, 2010, 518, S159-S161.	1.8	22
112	High-quality 6inch (111) 3C-SiC films grown on off-axis (111) Si substrates. Thin Solid Films, 2010, 518, S165-S169.	1.8	61
113	Stacking faults evolution during epitaxial growths: Role of surface the kinetics. Surface Science, 2010, 604, 939-942.	1.9	17
114	Lack of universal conductance features in disordered graphene nanoribbons. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, NA-NA.	0.8	1
115	Evolution of Stacking Faults Defects During Epitaxial Growths: Role of Surface Kinetics. Materials Research Society Symposia Proceedings, 2010, 1246, 1.	0.1	0
116	Simultaneous nickel silicidation and silicon crystallization induced by excimer laser annealing on plastic substrate. Applied Physics Letters, 2010, 96, 142113.	3.3	14
117	Low Stress Heteroepitaxial 3C-SiC Films Characterized by Microstructure Fabrication and Finite Elements Analysis. Journal of the Electrochemical Society, 2010, 157, H438.	2.9	20
118	Crystallization of implanted amorphous silicon during millisecond annealing by infrared laser irradiation. Applied Physics Letters, 2010, 97, .	3.3	14
119	Defect kinetics and dopant activation in submicrosecond laser thermal processes. Applied Physics Letters, 2009, 95, 231901.	3.3	23
120	Preferential oxidation of stacking faults in epitaxial off-axis (111) 3C-SiC films. Applied Physics Letters, 2009, 95, 111905.	3.3	24
121	Monte Carlo study of the step flow to island nucleation transition for close packed structures. Surface Science, 2009, 603, 2226-2229.	1.9	15
122	Insulator-metal transition in biased finite polyyne systems. European Physical Journal B, 2009, 70, 311-316.	1.5	13
123	Damage Formation and Evolution inÂlon-Implanted Crystalline Si. Topics in Applied Physics, 2009, , 147-212.	0.8	15
124	Effect of the miscut direction in (111) 3C-SiC film growth on off-axis (111)Si. Applied Physics Letters, 2009, 94, 101907.	3.3	27
125	Conductance distribution in doped and defected graphene nanoribbons. Physical Review B, 2009, 80, .	3.2	37
126	Defect formation and evolution in the step-flow growth of silicon carbide: A Monte Carlo study. Journal of Crystal Growth, 2008, 310, 971-975.	1.5	29

#	Article	IF	CITATIONS
127	Electronic transport in carbon nanotube based nano-devices. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2333-2338.	2.7	17
128	A polaron model of the electronic transport in a nanotube quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2289-2293.	2.7	4
129	Modeling vacancies and hydrogen impurities in graphene: A molecular point of view. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 6168-6174.	2.1	35
130	Defect and dopant kinetics in laser anneals of Si. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 154-155, 35-38.	3 . 5	6
131	Nonequilibrium aspects of armchair graphene nanoribbon conduction. Materials Science in Semiconductor Processing, 2008, 11, 190-194.	4.0	1
132	Bias-driven local density of states alterations and transport in ballistic molecular devices. Journal of Chemical Physics, 2008, 128, 164706.	3.0	14
133	Theoretical Monte Carlo Study of the Formation and Evolution of Defects in the Homoepitaxial Growth of SiC. Materials Science Forum, 2008, 600-603, 135-138.	0.3	16
134	Boron Electrical Activation in Crystalline Si after Millisecond Nonmelting Laser Irradiation. Journal of the Electrochemical Society, 2008, 155, H603.	2.9	8
135	Low-Temperature Annealing Combined with Laser Crystallization for Polycrystalline Silicon TFTs on Polymeric Substrate. Journal of the Electrochemical Society, 2008, 155, H764.	2.9	21
136	Violation of the single-parameter scaling hypothesis in disordered graphene nanoribbons. Physical Review B, 2008, 78, .	3.2	12
137	A mean field approach to many-particles effects in dielectrophoresis. Applied Physics Letters, 2008, 93, 193902.	3.3	9
138	Role of the internal strain on the incomplete Siâ^•SiO2 phase separation in substoichiometric silicon oxide films. Applied Physics Letters, 2007, 90, 183101.	3.3	22
139	Nucleation and growth of NiSi from Ni2Si transrotational domains. Applied Physics Letters, 2007, 90, 053507.	3.3	10
140	Phonon Driven Nonlinear Electrical Behavior in Molecular Devices. Physical Review Letters, 2007, 99, 136404.	7.8	30
141	Nonequilibrium electron charging in carbon-nanotube-based molecular bridges. Applied Physics Letters, 2007, 91, 163111.	3.3	6
142	Temperature Dependent Reaction of Thin Ni-Silicide Transrotational Layers on [001]Si., 2007,,.		1
143	Electron transport properties of calix[4]arene based systems in a metal–molecule–metal junction. New Journal of Chemistry, 2007, 31, 756-761.	2.8	3
144	Nanoisland shape relaxation mechanism. Surface Science, 2007, 601, 308-314.	1.9	8

#	Article	IF	Citations
145	Effects of interface bonding on the conductance of metal–carbon nanotube–metal systems. Materials Science and Engineering C, 2007, 27, 1102-1107.	7.3	2
146	A kinetic Monte Carlo method on super-lattices for the study of the defect formation in the growth of close packed structures. Journal of Computational Physics, 2007, 227, 1075-1093.	3.8	45
147	Integration of Melting Excimer Laser Annealing in Power MOS Technology. IEEE Transactions on Electron Devices, 2007, 54, 852-860.	3.0	13
148	Role of contact bonding on electronic transport in metal–carbon nanotube–metal systems. Nanotechnology, 2006, 17, 5063-5072.	2.6	44
149	Role of the Siâ^•SiO2 interface during dopant diffusion in thin silicon on insulator layers. Journal of Applied Physics, 2006, 100, 096112.	2.5	1
150	Structural characterization of Ni2Si pseudoepitaxial transrotational structures on [001] Si. Acta Crystallographica Section B: Structural Science, 2006, 62, 729-736.	1.8	14
151	Ultra-shallow junction by laser annealing: Integration issues and modelling. Nuclear Instruments & Methods in Physics Research B, 2006, 253, 1-8.	1.4	2
152	Excimer Laser annealing for shallow junction formation in Si power MOS devices. Thin Solid Films, 2006, 504, 2-6.	1.8	15
153	Bragg reflector based gate stack architecture for process integration of excimer laser annealing. Applied Physics Letters, 2006, 89, 253502.	3.3	1
154	Quantitative Measurements of Two-Dimensional Ultrashallow B Profiles in Si by Selective Chemical Etching. Journal of the Electrochemical Society, 2005, 152, G277.	2.9	2
155	Role of light scattering in excimer laser annealing of Si. Applied Physics Letters, 2005, 86, 161905.	3.3	21
156	The effect of excimer laser pretreatment on diffusion and activation of boron implanted in silicon. Applied Physics Letters, 2005, 87, 192109.	3.3	15
157	Enhanced boron diffusion in excimer laser preannealed Si. Applied Physics Letters, 2005, 86, 151902.	3.3	9
158	Depth distribution of B implanted in Si after excimer laser irradiation. Applied Physics Letters, 2005, 86, 051909.	3.3	29
159	Notching Effect on Metal Etch: A Very Simple Predictive Model. IEEE Transactions on Semiconductor Manufacturing, 2005, 18, 355-358.	1.7	3
160	Material modifications induced by laser annealing in two-dimensional structures. Applied Physics Letters, 2004, 84, 4738-4740.	3.3	22
161	A phase-field approach to the simulation of the excimer laser annealing process in Si. Journal of Applied Physics, 2004, 95, 4806-4814.	2.5	69
162	Computational methods for the simulation of the excimer laser annealing in MOS technology. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 114-115, 100-104.	3 . 5	0

#	Article	IF	Citations
163	Energetics and diffusivity of indium-related defects in silicon. Physical Review B, 2004, 69, .	3.2	20
164	Electrical activation phenomena induced by excimer laser annealingin B-implanted silicon. Applied Physics Letters, 2004, 85, 2268-2270.	3.3	11
165	Silicon carbide pinch rectifiers using a dual-metal Ti-Ni/sub 2/Si Schottky barrier. IEEE Transactions on Electron Devices, 2003, 50, 1741-1747.	3.0	24
166	Computational analysis of etched profile evolution for the derivation of 2D dopant density maps in silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 102, 43-48.	3.5	11
167	Diffusion and electrical activation of indium in silicon. Journal of Applied Physics, 2003, 93, 9773-9782.	2.5	21
168	Atomic scale computer aided design for novel semiconductor devices. Computational Materials Science, 2003, 27, 10-15.	3.0	6
169	Low Power Dissipation SiC Schottky Rectifiers with a Dual-Metal Planar Structure. Materials Science Forum, 2003, 433-436, 819-822.	0.3	1
170	Factors Affecting Profile Evolution in Plasma Etching of SiO[sub 2]. Journal of the Electrochemical Society, 2003, 150, F178.	2.9	23
171	Role of the indium–carbon interaction on In diffusion and activation in Si. Applied Physics Letters, 2003, 83, 1956-1958.	3.3	12
172	Topographic and structural evolution of etched Si samples. Computational Materials Science, 2002, 24, 246-251.	3.0	4
173	Atomistic simulations and the requirements of process simulator for novel semiconductor devices. Computational Materials Science, 2002, 24, 213-222.	3.0	2
174	Room temperature defect diffusion in ion implanted c-Si. Nuclear Instruments & Methods in Physics Research B, 2002, 186, 265-270.	1.4	4
175	Point defect diffusion and clustering in ion implanted c-Si. Nuclear Instruments & Methods in Physics Research B, 2001, 178, 25-32.	1.4	5
176	From Point to Extended Defects in Silicon: A Theoretical Study. Solid State Phenomena, 2001, 85-86, 177-202.	0.3	2
177	Self-Interstitial Kinetics and Transient Phenomena in Si Crystals. Solid State Phenomena, 2001, 82-84, 171-176.	0.3	1
178	Reduction of thermal damage in ultrathin gate oxides after intrinsic dielectric breakdown. Applied Physics Letters, 2001, 79, 1522-1524.	3.3	15
179	Electrical activation of ultralow energy As implants in Si. Journal of Applied Physics, 2001, 90, 3873-3878.	2.5	13
180	Accelerated Monte Carlo algorithms for defect diffusion and clustering. Computational Materials Science, 2000, 17, 21-33.	3.0	31

#	Article	IF	CITATIONS
181	Soft breakdown of gate oxides in metal–SiO2–Si capacitors under stress with hot electrons. Applied Physics Letters, 1999, 75, 1161-1163.	3.3	23
182	Role of Extended Vacancy-Vacancy Interaction on the Ripening of Voids in Silicon. Physical Review Letters, 1999, 82, 1720-1723.	7.8	45
183	Atomic transport properties and electrical activation of ultra-low energy implanted boron in crystalline silicon. Materials Science in Semiconductor Processing, 1999, 2, 35-44.	4.0	27
184	A mixed approach to the study of the magnetic and pairing correlations in the Bechgaard salts under pressure. Physica B: Condensed Matter, 1999, 265, 164-169.	2.7	0
185	Degradation and hard breakdown transient of thin gate oxides in metal–SiO2–Si capacitors: Dependence on oxide thickness. Journal of Applied Physics, 1999, 86, 6382-6391.	2.5	80
186	Electrical and thermal transient during dielectric breakdown of thin oxides in metal-SiO2-silicon capacitors. Journal of Applied Physics, 1998, 84, 472-479.	2.5	62
187	Surface, stress, and impurity effects on room-temperature migration of ion-beam-generated point defects. Applied Physics Letters, 1998, 73, 1571-1573.	3.3	5
188	One particle interacting with the acoustical phonons in a discrete chain. Physical Review B, 1997, 55, 6296-6303.	3.2	11
189	Mobile intersite bipolarons in the discrete Holstein-Hubbard model. Physical Review B, 1997, 55, 14886-14891.	3.2	29
190	Variational study of the discrete Holstein model. Physical Review B, 1996, 53, 8449-8456.	3.2	39
191	The ground state of an electron or exciton in the Holstein model. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 200, 213-218.	2.1	18
192	The ground state of an extra electron interacting with acoustic phonons in a molecular chain. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 205, 90-96.	2.1	15
193	Quasisoliton states in a two-dimensional discrete model. Physical Review B, 1995, 52, 15273-15278.	3.2	13
194	Exact diagonalization of a two-dimensional double band Hubbard model on a twelve-site Cuî—,O cluster. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 174, 263-266.	2.1	0
195	Atomistic and Continuum Simulations of the Homo-Epitaxial Growth of SiC. Materials Science Forum, 0, 615-617, 73-76.	0.3	6
196	Monte Carlo Study of the Hetero-Polytypical Growth of Cubic on Hexagonal Silicon Carbide Polytypes. Materials Science Forum, 0, 740-742, 295-300.	0.3	1
197	Study of the Effects of Growth Rate, Miscut Direction and Postgrowth Argon Annealing on the Surface Morphology of Homoepitaxially Grown 4H Silicon Carbide Films. Materials Science Forum, 0, 740-742, 229-234.	0.3	8
198	Effects of the Growth Rate on the Quality of 4H Silicon Carbide Films for MOSFET Applications. Materials Science Forum, 0, 778-780, 95-98.	0.3	3

#	Article	IF	CITATIONS
199	Atomistic Simulations and Interfacial Morphology of Graphene Grown on SiC(0001) and SiC(000-1) Substrates. Materials Science Forum, 0, 858, 1121-1124.	0.3	0
200	Interfacial Disorder of Graphene Grown at High Temperatures on 4H-SiC(000-1). Materials Science Forum, 0, 858, 1129-1132.	0.3	0
201	Anomalous Fowler-Nordheim Tunneling through SiO ₂ /4H-SiC Barrier Investigated by Temperature and Time Dependent Gate Current Measurements. Materials Science Forum, 0, 897, 123-126.	0.3	O
202	High Resolution Investigation of Stacking Fault Density by HRXRD and STEM. Materials Science Forum, 0, 963, 346-349.	0.3	5
203	Multiscale Simulations of Plasma Etching in Silicon Carbide Structures. Materials Science Forum, 0, 1062, 214-218.	0.3	1
204	Computational Study of the Silicon Vacancy in 3C-SiC and Perspectives for Quantum Technologies. Materials Science Forum, 0, 1062, 309-314.	0.3	0
205	Ni/Heavily-Doped 4H-SiC Schottky Contacts. Materials Science Forum, 0, 1062, 411-416.	0.3	O
206	Structural and Electrical Characterization of Ni-Based Ohmic Contacts on 4H-SiC Formed by Solid-State Laser Annealing. Materials Science Forum, 0, 1062, 417-421.	0.3	2