List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/435279/publications.pdf Version: 2024-02-01

DETED THIED

#	Article	IF	CITATIONS
1	Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nature Neuroscience, 2004, 7, 56-64.	7.1	342
2	Mirror Neurons Differentially Encode the Peripersonal and Extrapersonal Space of Monkeys. Science, 2009, 324, 403-406.	6.0	306
3	Misattributions of agency in schizophrenia are based on imprecise predictions about the sensory consequences of one's actions. Brain, 2010, 133, 262-271.	3.7	295
4	Saccadic Dysmetria and Adaptation after Lesions of the Cerebellar Cortex. Journal of Neuroscience, 1999, 19, 10931-10939.	1.7	292
5	View-Based Encoding of Actions in Mirror Neurons of Area F5 in Macaque Premotor Cortex. Current Biology, 2011, 21, 144-148.	1.8	205
6	The neural basis of smooth-pursuit eye movements. Current Opinion in Neurobiology, 2005, 15, 645-652.	2.0	195
7	Electrical Microstimulation Distinguishes Distinct Saccade-Related Areas in the Posterior Parietal Cortex. Journal of Neurophysiology, 1998, 80, 1713-1735.	0.9	191
8	The Cerebellum Updates Predictions about the Visual Consequences of One's Behavior. Current Biology, 2008, 18, 814-818.	1.8	190
9	Disorders of Agency in Schizophrenia Correlate with an Inability to Compensate for the Sensory Consequences of Actions. Current Biology, 2005, 15, 1119-1124.	1.8	179
10	Encoding of movement time by populations of cerebellar Purkinje cells. Nature, 2000, 405, 72-76.	13.7	175
11	Binding of signals relevant for action: towards a hypothesis of the functional role of the pontine nuclei. Trends in Neurosciences, 1999, 22, 443-451.	4.2	168
12	Specific influences of cerebellar dysfunctions on gait. Brain, 2007, 130, 786-798.	3.7	168
13	False perception of motion in a patient who cannot compensate for eye movements. Nature, 1997, 389, 849-852.	13.7	151
14	Reduced saccadic resilience and impaired saccadic adaptation due to cerebellar disease. European Journal of Neuroscience, 2008, 27, 132-144.	1.2	149
15	Responses of Visual-Tracking Neurons from Cortical Area MST-I to Visual, Eye and Head Motion. European Journal of Neuroscience, 1992, 4, 539-553.	1.2	141
16	A neuronal correlate of spatial stability during periods of self-induced visual motion. Experimental Brain Research, 1991, 86, 608-16.	0.7	136
17	Dissociable Roles of the Superior Temporal Sulcus and the Intraparietal Sulcus in Joint Attention: A Functional Magnetic Resonance Imaging Study. Journal of Cognitive Neuroscience, 2008, 20, 108-119.	1.1	123
18	Cerebellar-dependent motor learning is based on pruning a Purkinje cell population response. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7309-7314.	3.3	120

#	Article	IF	CITATIONS
19	Mirror neurons encode the subjective value of an observed action. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11848-11853.	3.3	114
20	Neuronal Response Gain Enhancement prior to Microsaccades. Current Biology, 2015, 25, 2065-2074.	1.8	114
21	Contextual Influence on Orientation Discrimination of Humans and Responses of Neurons in V1 of Alert Monkeys. Journal of Neurophysiology, 2000, 83, 941-954.	0.9	113
22	Posterior Parietal Cortex Neurons Encode Target Motion in World-Centered Coordinates. Neuron, 2004, 43, 145-151.	3.8	109
23	Cerebellar Complex Spike Firing Is Suitable to Induce as Well as to Stabilize Motor Learning. Current Biology, 2005, 15, 2179-2189.	1.8	99
24	Internalizing Agency of Self-Action: Perception of One's Own Hand Movements Depends on an Adaptable Prediction About the Sensory Action Outcome. Journal of Neurophysiology, 2006, 96, 1592-1601.	0.9	94
25	Visual Tracking Neurons in Primate Area MST Are Activated by Smooth-Pursuit Eye Movements of an "lmaginary―Target. Journal of Neurophysiology, 2003, 90, 1489-1502.	0.9	91
26	Neuronal activity in the dorsolateral pontine nucleus of the alert monkey modulated by visual stimuli and eye movements. Experimental Brain Research, 1988, 70, 496-512.	0.7	90
27	Patterns of projections from the pontine nuclei and the nucleus reticularis tegmenti pontis to the posterior vermis in the rhesus monkey: A study using retrograde tracers. Journal of Comparative Neurology, 1993, 337, 113-126.	0.9	87
28	Electrical microstimulation suggests two different forms of representation of head-centered space in the intraparietal sulcus of rhesus monkeys Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4962-4967.	3.3	87
29	Pharmacological modulation of on and off ganglion cells in the cat retina. Neuroscience, 1984, 12, 875-885.	1.1	83
30	Characteristics of Responses of Golgi Cells and Mossy Fibers to Eye Saccades and Saccadic Adaptation Recorded from the Posterior Vermis of the Cerebellum. Journal of Neuroscience, 2009, 29, 250-262.	1.7	77
31	Two Types of Neurons in the Rat Cerebellar Nuclei as Distinguished by Membrane Potentials and Intracellular Fillings. Journal of Neurophysiology, 2001, 85, 2017-2029.	0.9	75
32	Physiologically Inspired Model for the Visual Recognition of Transitive Hand Actions. Journal of Neuroscience, 2013, 33, 6563-6580.	1.7	75
33	Optimizing Visual Motion Perception during Eye Movements. Neuron, 2001, 32, 527-535.	3.8	72
34	The neural basis of smooth pursuit eye movements in the rhesus monkey brain. Brain and Cognition, 2008, 68, 229-240.	0.8	68
35	The Role of the Oculomotor Vermis in the Control of Saccadic Eye Movements. Annals of the New York Academy of Sciences, 2002, 978, 50-62.	1.8	66
36	Improvement of visual acuity by spatial cueing: a comparative study in human and non-human primates. Vision Research, 2004, 44, 1589-1600.	0.7	64

#	Article	IF	CITATIONS
37	Dissociable Roles of the Superior Temporal Sulcus and the Intraparietal Sulcus in Joint Attention: A Functional Magnetic Resonance Imaging Study. Journal of Cognitive Neuroscience, 2008, 20, 108-119.	1.1	64
38	The role of the cerebellum in saccadic adaptation as a window into neural mechanisms of motor learning. European Journal of Neuroscience, 2011, 33, 2114-2128.	1.2	63
39	The posterior superior temporal sulcus is involved in social communication not specific for the eyes. Neuropsychologia, 2008, 46, 2759-2765.	0.7	62
40	Action and localization of glycine and taurine in the cat retina Journal of Physiology, 1985, 362, 395-413.	1.3	61
41	Slow brain potentials and psychomotor retardation in depression. Electroencephalography and Clinical Neurophysiology, 1986, 63, 570-581.	0.3	61
42	The Absence of Eye Muscle Fatigue Indicates That the Nervous System Compensates for Non-Motor Disturbances of Oculomotor Function. Journal of Neuroscience, 2010, 30, 15834-15842.	1.7	61
43	The relationship between P3-latency and reaction time in depression. Biological Psychology, 1981, 13, 31-49.	1.1	60
44	The attentive cerebellum $\hat{a} \in $ " myth or reality?. Cerebellum, 2007, 6, 177-83.	1.4	60
45	Quantitative organization of neurotransmitters in the deep cerebellar nuclei of the Lurcher mutant. Journal of Comparative Neurology, 2002, 452, 311-323.	0.9	59
46	Multiplexed coding by cerebellar Purkinje neurons. ELife, 2016, 5, .	2.8	59
47	Absence of a common functional denominator of visual disturbances in cerebellar disease. Brain, 1999, 122, 2133-2146.	3.7	58
48	Disturbed overt but normal covert shifts of attention in adult cerebellar patients. Brain, 2005, 128, 1525-1535.	3.7	57
49	Action of iontophoretically applied dopamine on cat retinal ganglion cells. Brain Research, 1984, 292, 109-121.	1.1	55
50	Selective impairment of smooth-pursuit eye movements due to an ischemic lesion of the basal pons. Annals of Neurology, 1991, 29, 443-448.	2.8	54
51	Opposite Dependencies on Visual Motion Coherence in Human Area MT+ and Early Visual Cortex. Cerebral Cortex, 2007, 17, 1542-1549.	1.6	52
52	Bilateral recruitment of prefrontal cortex in working memory is associated with task demand but not with age. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E830-E839.	3.3	51
53	Unravelling cerebellar pathways with high temporal precision targeting motor and extensive sensory and parietal networks. Nature Communications, 2012, 3, 924.	5.8	49
54	How precise is gaze following in humans?. Vision Research, 2008, 48, 946-957.	0.7	43

#	Article	IF	CITATIONS
55	Single-neuron evidence for a contribution of the dorsal pontine nuclei to both types of target-directed eye movements, saccades and smooth-pursuit. European Journal of Neuroscience, 2004, 19, 609-624.	1.2	42
56	The oculomotor role of the pontine nuclei and the nucleus reticularis tegmenti pontis. Progress in Brain Research, 2006, 151, 293-320.	0.9	42
57	The influence of structured visual backgrounds on smooth-pursuit initiation, steady-state pursuit and smooth-pursuit termination. Biological Cybernetics, 1995, 73, 83-93.	0.6	41
58	Morphological classification of the rat lateral cerebellar nuclear neurons by principal component analysis. Journal of Comparative Neurology, 2003, 455, 139-155.	0.9	41
59	Cerebrocerebellar Circuits for the Perceptual Cancellation of Eye-movement-induced Retinal Image Motion. Journal of Cognitive Neuroscience, 2006, 18, 1899-1912.	1.1	41
60	Visual Motion Perception Deficits Due to Cerebellar Lesions Are Paralleled by Specific Changes in Cerebro-Cortical Activity. Journal of Neuroscience, 2009, 29, 15126-15133.	1.7	40
61	Indoleamine-mediated reciprocal modulation of on-centre and off-centre ganglion cell activity in the retina of the cat Journal of Physiology, 1984, 351, 613-630.	1.3	39
62	Responses of Direction-Selective Neurons in Monkey Cortex to Self-Induced Visual Motion. Annals of the New York Academy of Sciences, 1992, 656, 766-774.	1.8	39
63	Modification of the filehne illusion by conditioning visual stimuli. Vision Research, 1996, 36, 741-750.	0.7	39
64	Mirror neurons in monkey area F5 do not adapt to the observation of repeated actions. Nature Communications, 2013, 4, 1433.	5.8	38
65	Impaired analysis of moving objects due to deficient smooth pursuit eye movements. Brain, 1999, 122, 1495-1505.	3.7	36
66	Normal Spatial Attention But Impaired Saccades and Visual Motion Perception After Lesions of the Monkey Cerebellum. Journal of Neurophysiology, 2009, 102, 3156-3168.	0.9	35
67	Inability of Rhesus Monkey Area V1 to Discriminate Between Self-induced and Externally Induced Retinal Image Slip. European Journal of Neuroscience, 1996, 8, 1156-1166.	1.2	34
68	Neuronal responses from beyond the classic receptive field in V1 of alert monkeys. Experimental Brain Research, 2001, 139, 359-371.	0.7	34
69	Disparate substrates for head gaze following and face perception in the monkey superior temporal sulcus. ELife, 2014, 3, .	2.8	33
70	Mirror Neurons in Monkey Premotor Area F5 Show Tuning for Critical Features of Visual Causality Perception. Current Biology, 2016, 26, 3077-3082.	1.8	32
71	An Electrophysiological Correlate of Visual Motion Awareness in Man. Journal of Cognitive Neuroscience, 1998, 10, 464-471.	1.1	31
72	Cortical processing of head- and eye-gaze cues guiding joint social attention. NeuroImage, 2011, 54, 1643-1653.	2.1	31

#	Article	IF	CITATIONS
73	The role of cortical area MST in a model of combined smooth eye-head pursuit. Biological Cybernetics, 1999, 80, 71-84.	0.6	30
74	A Generic Framework for Real-Time Multi-Channel Neuronal Signal Analysis, Telemetry Control, and Sub-Millisecond Latency Feedback Generation. Frontiers in Neuroscience, 2010, 4, 173.	1.4	30
75	Neuronal correlates of perceptual stability during eye movements. European Journal of Neuroscience, 2008, 27, 991-1002.	1.2	29
76	Encoding of Smooth-Pursuit Eye Movement Initiation by a Population of Vermal Purkinje Cells. Cerebral Cortex, 2012, 22, 877-891.	1.6	29
77	Neuromagnetic activity in medial parietooccipital cortex reflects the perception of visual motion during eye movements. Neurolmage, 2004, 21, 593-600.	2.1	28
78	Duration of Purkinje cell complex spikes increases with their firing frequency. Frontiers in Cellular Neuroscience, 2015, 9, 122.	1.8	28
79	Neuronal substrates of gaze following in monkeys. European Journal of Neuroscience, 2009, 29, 1732-1738.	1.2	27
80	Cortical Substrates of Perceptual Stability during Eye Movements. Neurolmage, 2001, 14, S33-S39.	2.1	26
81	Microsaccade Control Signals in the Cerebellum. Journal of Neuroscience, 2015, 35, 3403-3411.	1.7	26
82	Eye movements of rhesus monkeys directed towards imaginary targets. Vision Research, 1999, 39, 2143-2150.	0.7	25
83	Specific vermal complex spike responses build up during the course of smooth-pursuit adaptation, paralleling the decrease of performance error. Experimental Brain Research, 2010, 205, 41-55.	0.7	25
84	Learning from the past: A reverberation of past errors in the cerebellar climbing fiber signal. PLoS Biology, 2018, 16, e2004344.	2.6	25
85	Role of the Vermal Cerebellum in Visually Guided Eye Movements and Visual Motion Perception. Annual Review of Vision Science, 2019, 5, 247-268.	2.3	25
86	Encoding of point of view during action observation in the local field potentials of macaque area F5. European Journal of Neuroscience, 2015, 41, 466-476.	1.2	24
87	Neural Control of Saccadic Eye Movements. , 2007, 40, 52-75.		23
88	Cerebellum-Dependent Motor Learning. Progress in Brain Research, 2014, 210, 121-155.	0.9	21
89	Decoding of the other $\hat{a} \in \mathbb{M}$ s focus of attention by a temporal cortex module. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2663-2670.	3.3	21
90	Morphology and mosaics of VIP-like immunoreactive neurons in the retina of the rhesus monkey. Journal of Comparative Neurology, 1991, 312, 251-263.	0.9	20

#	Article	IF	CITATIONS
91	The subjective visual vertical in a nonhuman primate. Journal of Vision, 2008, 8, 19.	0.1	20
92	Following Eye Gaze Activates a Patch in the Posterior Temporal Cortex That Is not Part of the Human "Face Patch―System. ENeuro, 2017, 4, ENEURO.0317-16.2017.	0.9	20
93	Lurcher Mice Exhibit Potentiation of GABAA-Receptor–Mediated Conductance in Cerebellar Nuclei Neurons in Close Temporal Relationship to Purkinje Cell Death. Journal of Neurophysiology, 2004, 91, 1102-1107.	0.9	19
94	Detection of speed changes during pursuit eye movements. Experimental Brain Research, 2006, 170, 345-357.	0.7	19
95	The Role of the Monkey Dorsal Pontine Nuclei in Goal-Directed Eye and Hand Movements. Journal of Neuroscience, 2009, 29, 6154-6166.	1.7	19
96	Neural theory for the perception of causal actions. Psychological Research, 2012, 76, 476-493.	1.0	18
97	Binocular interaction in the optokinetic system of the crab <i>Carcinus maenas</i> (L): Optokinetic gain modified by bilateral image flow. Visual Neuroscience, 1993, 10, 873-885.	0.5	17
98	A vermal Purkinje cell simple spike population response encodes the changes in eye movement kinematics due to smooth pursuit adaptation. Frontiers in Systems Neuroscience, 2013, 7, 3.	1.2	17
99	Individual neurons in the caudal fastigial oculomotor region convey information on both macro―and microsaccades. European Journal of Neuroscience, 2016, 44, 2531-2542.	1.2	17
100	The same oculomotor vermal Purkinje cells encode the different kinematics of saccades and of smooth pursuit eye movements. Scientific Reports, 2017, 7, 40613.	1.6	16
101	Comparison of projection neurons in the pontine nuclei and the nucleus reticularis tegmenti pontis of the rat. , 1996, 376, 403-419.		15
102	Electrophysiological Properties of Rat Pontine Nuclei Neurons In Vitro II. Postsynaptic Potentials. Journal of Neurophysiology, 1997, 78, 3338-3350.	0.9	15
103	Electrophysiological Properties of Rat Pontine Nuclei Neurons In Vitro. I. Membrane Potentials and Firing Patterns. Journal of Neurophysiology, 1997, 78, 3323-3337.	0.9	15
104	Selective Attention Increases the Dependency of Cortical Responses on Visual Motion Coherence in Man. Cerebral Cortex, 2008, 18, 2902-2908.	1.6	15
105	Using deep neural networks to detect complex spikes of cerebellar Purkinje cells. Journal of Neurophysiology, 2020, 123, 2217-2234.	0.9	15
106	Cerebellar complex spikes multiplex complementary behavioral information. PLoS Biology, 2021, 19, e3001400.	2.6	14
107	Localization of aspartate aminotransferase and cytochrome oxidase in the cat retina. Neuroscience Letters, 1985, 53, 315-320.	1.0	13
108	The functional architecture of attention. Current Biology, 2002, 12, R158-R162.	1.8	12

#	Article	IF	CITATIONS
109	Blink associated resetting eye movements (BARMs) are functionally complementary to microsaccades in correcting for fixation errors. Scientific Reports, 2017, 7, 16823.	1.6	12
110	Reply. Trends in Neurosciences, 2000, 23, 152-153.	4.2	11
111	Assessing the precision of gaze following using a stereoscopic 3D virtual reality setting. Vision Research, 2015, 112, 68-82.	0.7	11
112	A new motor synergy that serves the needs of oculomotor and eye lid systems while keeping the downtime of vision minimal. ELife, 2016, 5, .	2.8	11
113	Organization of tectopontine terminals within the pontine nuclei of the rat and their spatial relationship to terminals from the visual and somatosensory cortex. Journal of Comparative Neurology, 2005, 484, 283-298.	0.9	10
114	A loss of a velocityâ€duration tradeâ€off impairs movement precision in patients with cerebellar degeneration. European Journal of Neuroscience, 2018, 48, 1976-1989.	1.2	10
115	Different effects of visual deprivation on vasoactive intestinal polypeptide (VIP)-containing cells in the retinas of juvenile and adult rats. Experimental Brain Research, 1996, 111, 345-55.	0.7	9
116	Demonstration of an eye-movement-induced visual motion illusion (Filehne illusion) in Rhesus monkeys. Journal of Vision, 2009, 9, 5-5.	0.1	9
117	A Naturalistic Dynamic Monkey Head Avatar Elicits Species-Typical Reactions and Overcomes the Uncanny Valley. ENeuro, 2020, 7, ENEURO.0524-19.2020.	0.9	9
118	Pontine Reference Frames for the Sensory Guidance of Movement. Cerebral Cortex, 2012, 22, 345-362.	1.6	8
119	Smooth pursuit adaptation (SPA) exhibits features useful to compensate changes in the properties of the smooth pursuit eye movement system due to usage. Frontiers in Systems Neuroscience, 2013, 7, 67.	1.2	8
120	Monkeys head-gaze following is fast, precise and not fully suppressible. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151020.	1.2	8
121	Reflexive gaze following in common marmoset monkeys. Scientific Reports, 2019, 9, 15292.	1.6	8
122	Brainstem afferents to the lateral mesencephalic tegmental region of the cat. Journal of Comparative Neurology, 1995, 358, 219-232.	0.9	7
123	Postoperative psychosis in homocystinuria. European Psychiatry, 1997, 12, 98-101.	0.1	7
124	GABAergic inhibition in the rat pontine nuclei is exclusively extrinsic: evidence from an in situ hybridization study for GAD 67 mRNA. Experimental Brain Research, 1999, 124, 529-532.	0.7	7
125	Gamma oscillations underlying the visual motion aftereffect. NeuroImage, 2007, 38, 708-719.	2.1	7
126	Serotonergic Control of Cerebellar Mossy Fiber Activity by Modulation of Signal Transfer by Rat Pontine Nuclei Neurons. Journal of Neurophysiology, 2002, 88, 549-564.	0.9	6

PETER THIER

#	Article	IF	CITATIONS
127	V1 neurons encode the perceptual compensation of false torsion arising from Listing's law. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18799-18809.	3.3	6
128	Frontal, Parietal, and Temporal Brain Areas Are Differentially Activated When Disambiguating Potential Objects of Joint Attention. ENeuro, 2020, 7, ENEURO.0437-19.2020.	0.9	6
129	Saccadic gain adaptation is predicted by the statistics of natural fluctuations in oculomotor function. Frontiers in Computational Neuroscience, 2012, 6, 96.	1.2	4
130	Persistence of the dark-background-contingent gaze upshift during visual fixations of rhesus monkeys. Journal of Neurophysiology, 2014, 112, 1999-2005.	0.9	4
131	Glissades Are Altered by Lesions to the Oculomotor Vermis but Not by Saccadic Adaptation. Frontiers in Behavioral Neuroscience, 2019, 13, 194.	1.0	4
132	Variability of neuronal responses in the posterior superior temporal sulcus predicts choice behavior during social interactions. Journal of Neurophysiology, 2021, 126, 1925-1933.	0.9	4
133	Investigation of the Dorsolateral Basilar Pontine Grey of the Alert Monkey. Brain, Behavior and Evolution, 1989, 33, 75-79.	0.9	3
134	Non-human primates exhibit disconjugate ocular counterroll to head roll tilts. Vision Research, 2011, 51, 1986-1993.	0.7	3
135	Does the brain encode the gaze of others as beams emitted by their eyes?. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20375-20376.	3.3	3
136	Representation of the observer's predicted outcome value in mirror and nonmirror neurons of macaque F5 ventral premotor cortex. Journal of Neurophysiology, 2020, 124, 941-961.	0.9	3
137	The oculomotor cerebellum. , 2011, , .		3
138	Visual and vestibular signals in the lateral mesencephalic tegmental region of the cat. Experimental Brain Research, 1991, 85, 641-9.	0.7	2
139	Acute and Chronic Alcohol-Related Disorders. , 2003, , 971-990.		2
140	The Cerebellum: Eye Movements. , 2013, , 1169-1185.		2
141	Parietal blood oxygenation levelâ€dependent response evoked by covert visual search reflects setâ€size effect in monkeys. European Journal of Neuroscience, 2014, 39, 832-840.	1.2	2
142	The Role of the Cerebellum in Optimizing Saccades. , 2016, , 173-196.		2
143	Visual Circuits. , 2016, , 89-100.		2
144	Learning-based methods for the analysis of intralimb-coordination and adaptation of locomotor		1

patterns in cerebellar patients. , 2007, , .

#	Article	IF	CITATIONS
145	Towards the Neural Basis of Spatial Attention: Studies in Monkey and Man. Neuro-Ophthalmology, 2009, 33, 132-141.	0.4	1
146	Does Chronic Idiopathic Dizziness Reflect an Impairment of Sensory Predictions of Self-Motion?. Frontiers in Neurology, 2013, 4, 181.	1.1	1
147	New properties of F5 mirror neurons and their implications for response selection. , 2015, , 39-57.		1
148	Short-term adaptation of saccades does not affect smooth pursuit eye movement initiation. Journal of Vision, 2017, 17, 19.	0.1	1
149	Shape-invariant encoding of dynamic primate facial expressions in human perception. ELife, 2021, 10, .	2.8	1
150	Dark-habituation increases the dark-background-contingent upshift of gaze in macaque monkeys. Vision Research, 2021, 188, 262-273.	0.7	1
151	Sensitivity of express saccades to the expected value of the target. Journal of Neurophysiology, 2021, 125, 238-247.	0.9	1
152	Physiologically-Inspired Neural Circuits for the Recognition of Dynamic Faces. Lecture Notes in Computer Science, 2020, , 168-179.	1.0	1
153	A cortical substrate for motion perception during self-motion. Behavioral and Brain Sciences, 1994, 17, 335-335.	0.4	0
154	Ocular Flutter—A Sign of Brain-Stem Pathology as Rare Consequence of Cyclosporin A Treatment. Neuro-Ophthalmology, 2005, 29, 81-84.	0.4	0
155	Die inferentielle Natur der Wahrnehmung: Die Bedeutung des Reafferenzprinzips für das Bewegungssehen. E-Neuroforum, 2006, 12, 160-165.	0.2	0
156	Saccade angle modulates correlation between the local field potential and cerebellar Purkinje neuron activity. BMC Neuroscience, 2013, 14, .	0.8	0
157	The dependencies of frontoâ€parietal <scp>BOLD</scp> responses evoked by covert visual search suggest eyeâ€centred coding. European Journal of Neuroscience, 2013, 37, 1320-1329.	1.2	0
158	Das Hertie-Institut für Klinische Hirnforschung. Ein Modell zukünftiger Universitäsmedizin?. E-Neuroforum, 2016, 22, 27-29.	0.2	0
159	Cerebellum: Eye Movements. , 2016, , 1297-1314.		0
160	Neural models for the cross-species recognition of dynamic facial expressions. Journal of Vision, 2021, 21, 2238.	0.1	0
161	Frontal, Parietal, and Temporal Brain Areas Are Differentially Activated When Disambiguating Potential Objects of Joint Attention. ENeuro, 2020, 7,	0.9	0
162	The Quest for a Unifying Framework for the Role of Cerebellar Complex Spikes. Contemporary Clinical Neuroscience, 2021, , 277-304.	0.3	0

#	Article	IF	CITATIONS
163	Differential Kinematic Encoding of Saccades and Smooth-pursuit Eye Movements by Fastigial Neurons. Neuroscience Bulletin, 2022, , .	1.5	0