Saroj Arora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4352496/publications.pdf Version: 2024-02-01

SADOL ADODA

#	Article	IF	CITATIONS
1	Pesticide residues in various environmental and biological matrices: distribution, extraction, and analytical procedures. Environment, Development and Sustainability, 2022, 24, 6032-6052.	5.0	12
2	Induction of apoptosis in A431 cells via ROS generation and p53-mediated pathway by chloroform fraction of Argemone mexicana (Pepaveraceae). Environmental Science and Pollution Research, 2022, 29, 17189-17208.	5.3	6
3	Pharmacokinetics and toxicity profiling of 4-(methylthio)butyl isothiocyanate with special reference to pre-clinical safety assessment studies. Toxicon, 2022, 212, 19-33.	1.6	4
4	Plant-Based Polysaccharides and their Health Functions. Functional Foods in Health and Disease, 2021, 11, 179.	0.6	12
5	Appraisal of heavy metal pollution in groundwater of Malwa region, Punjab (India) using stress biomarkers in Brassica juncea. Environmental Earth Sciences, 2021, 80, 1.	2.7	5
6	In vitro Antioxidant, Antimutagenic and Anti-hemolytic Potency of Allyl Isothiocyanate: A Natural Molecule. Journal of Biologically Active Products From Nature, 2021, 11, 228-241.	0.3	1
7	Biofunctional significance of multi-herbal combination against paracetamol-induced hepatotoxicity in Wistar rats. Environmental Science and Pollution Research, 2021, 28, 61021-61046.	5.3	4
8	Broccoli (Brassica oleracea L. var. italica) cultivars, Palam Samridhi and Palam Vichitra affect the growth of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Heliyon, 2021, 7, e07612.	3.2	0
9	Molecular targets in cancer prevention by 4-(methylthio)butyl isothiocyanate - A comprehensive review. Life Sciences, 2020, 241, 117061.	4.3	17
10	Synthesis, characterization, DNA-binding and biological studies of novel titanium (IV) complexes. Journal of Chemical Sciences, 2020, 132, 1.	1.5	1
11	Screening of rhizomes of Rheum emodi Wall. Ex. Meissen for antimutagenic potential employing Ames assay. Nucleus (India), 2020, 63, 167-177.	2.2	2
12	Antiproliferative Effects of Roylea cinerea (D. Don) Baillon Leaves in Immortalized L6 Rat Skeletal Muscle Cell Line: Role of Reactive Oxygen Species Mediated Pathway. Frontiers in Pharmacology, 2020, 11, 322.	3.5	4
13	Development of aqueous-based multi-herbal combination using principal component analysis and its functional significance in HepG2 cells. BMC Complementary and Alternative Medicine, 2019, 19, 18.	3.7	22
14	Reverse phase HPLC method validation for estimation of polyphenols in medicinal plants and their possible role in reticence of xanthine oxidase activity. Separation Science Plus, 2019, 2, 237-244.	0.6	10
15	In vitro evaluation of the α-glucosidase inhibitory potential of methanolic extracts of traditionally used antidiabetic plants. BMC Complementary and Alternative Medicine, 2019, 19, 74.	3.7	80
16	Evaluating groundwater for its probable mutagenicity and genotoxicity using in vitro bioanalytical tools. Exposure and Health, 2019, 11, 21-31.	4.9	1
17	Progression of conventional hepatic cell culture models to bioengineered HepG2 cells for evaluation of herbal bioactivities. Biotechnology Letters, 2018, 40, 881-893.	2.2	11
18	Development of validated high-temperature reverse-phase UHPLC-PDA analytical method for simultaneous analysis of five natural isothiocyanates in cruciferous vegetables. Food Chemistry, 2018, 239, 1085-1089.	8.2	13

SAROJ ARORA

#	Article	IF	CITATIONS
19	Polyphenols From Cutch Tree (Acacia catechu Willd.): Normalize In Vitro Oxidative Stress and Exerts Antiproliferative Activity. Brazilian Archives of Biology and Technology, 2018, 61, .	0.5	4
20	Multi-residue pesticides analysis in water samples using reverse phase high performance liquid chromatography (RP-HPLC). MethodsX, 2018, 5, 744-751.	1.6	20
21	Water quality monitoring of an international wetland at Harike, Punjab and its impact on biological systems. Applied Water Science, 2017, 7, 1107-1115.	5.6	16
22	Synergistic antimutagenic effect of isothiocyanates against varied mutagens. Food and Chemical Toxicology, 2017, 109, 879-887.	3.6	10
23	Immunopotentiating significance of conventionally used plant adaptogens as modulators in biochemical and molecular signalling pathways in cell mediated processes. Biomedicine and Pharmacotherapy, 2017, 95, 1815-1829.	5.6	34
24	Assessment of groundwater quality for drinking and irrigation purposes using hydrochemical studies in Malwa region, southwestern part of Punjab, India. Applied Water Science, 2017, 7, 3301-3316.	5.6	122
25	Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer. Cell and Bioscience, 2017, 7, 62.	4.8	126
26	Quantitative and Qualitative Analysis of <i>Eruca sativa</i> and <i>Brassica juncea</i> Seeds by UPLC-DAD and UPLC-ESI-QTOF. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	1
27	Effect of 3β, hydroxy-lup-20(29)-en-28-oic acid on 7,12-Dimethylbenz(a) anthracene impaired cellular homeostasis in extrahepatic organs of Sprague Dawley rats. Journal of Xenobiotics, 2017, 7, 6475.	6.7	2
28	Changing Trends in the Methodologies of Extraction and Analysis of Hydrolytic Products of Glucosinolates: A Review. Reference Series in Phytochemistry, 2017, , 383-405.	0.4	1
29	Evaluating the Renoprotective Activity of 4-Methylthiobutyl Isothiocyanate against 7,12-Dimethylbenz(α) anthracene generated Radical Stress in Male Wistar Rats. AMEI S Current Trends in Diagnosis & Treatment, 2017, 1, 10-14.	0.1	0
30	Delineation of attenuation of oxidative stress and mutagenic stress by Murraya exotica L. leaves. SpringerPlus, 2016, 5, 1037.	1.2	7
31	3-Butenyl isothiocyanate: a hydrolytic product of glucosinolate as a potential cytotoxic agent against human cancer cell lines. Journal of Food Science and Technology, 2016, 53, 3437-3445.	2.8	24
32	Conventional and modified hydrodistillation method for the extraction of glucosinolate hydrolytic products: a comparative account. SpringerPlus, 2016, 5, 479.	1.2	17
33	To Analyze the Amelioration of Phenobarbital Induced Oxidative Stress by Erucin, as Indicated by Biochemical and Histological Alterations. Anti-Cancer Agents in Medicinal Chemistry, 2016, 16, 1445-1454.	1.7	3
34	Changing Trends in the Methodologies of Extraction and Analysis of Hydrolytic Products of Glucosinolates: A Review. , 2016, , 1-23.		0
35	Oxidative stress—implications, source and its prevention. Environmental Science and Pollution Research, 2014, 21, 1599-1613.	5.3	37
36	Free radical scavenging, antiproliferative activities and profiling of variations in the level of phytochemicals in different parts of broccoli (Brassica oleracea italica). Food Chemistry, 2014, 148, 373-380.	8.2	25

Saroj Arora

#	Article	IF	CITATIONS
37	Evaluating Extraction Conditions of Glucosinolate Hydrolytic Products from Seeds of <i>Eruca sativa</i> (Mill.) Thell. Using GCâ€MS. Journal of Food Science, 2014, 79, C1964-9.	3.1	18
38	Assessment of mutagenic, genotoxic, and cytotoxic potential of water samples of Harike wetland: a Ramsar site in India using different ex vivo biological systems. Ecotoxicology, 2014, 23, 967-977.	2.4	9
39	Hepatic Dysfunction Induced by 7, 12-Dimethylbenz(α)anthracene and Its Obviation with Erucin Using Enzymatic and Histological Changes as Indicators. PLoS ONE, 2014, 9, e112614.	2.5	24
40	Interactions of betulinic acid with xenobiotic metabolizing and antioxidative enzymes in DMBA-treated Sprague Dawley female rats. Free Radical Biology and Medicine, 2013, 65, 131-142.	2.9	18
41	Antimutagenic and Antioxidant Characteristics of Chukrasia tabularis A Juss Extracts. International Journal of Toxicology, 2011, 30, 21-34.	1.2	8
42	Inhibition of lipid peroxidation by extracts/subfractions of Chickrassy (Chukrasia tabularis A. Juss.). Die Naturwissenschaften, 2009, 96, 129-133.	1.6	9
43	Bio-protective effects of glucosinolates – A review. LWT - Food Science and Technology, 2009, 42, 1561-1572.	5.2	214
44	Antioxidant activity of the phenol rich fractions of leaves of Chukrasia tabularis A. Juss Bioresource Technology, 2008, 99, 7692-7698.	9.6	77
45	The in vitro cytotoxic and apoptotic activity of Triphala—an Indian herbal drug. Journal of Ethnopharmacology, 2005, 97, 15-20.	4.1	95