Morten Grunnet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/435249/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms of Action of the KCa2-Negative Modulator AP30663, a Novel Compound in Development for Treatment of Atrial Fibrillation in Man. Frontiers in Pharmacology, 2020, 11, 610.	1.6	18
2	The KCa2 Channel Inhibitor AP30663 Selectively Increases Atrial Refractoriness, Converts Vernakalant-Resistant Atrial Fibrillation and Prevents Its Reinduction in Conscious Pigs. Frontiers in Pharmacology, 2020, 11, 159.	1.6	28
3	Inhibition of KCa2 and Kv11.1 Channels in Pigs With Left Ventricular Dysfunction. Frontiers in Pharmacology, 2020, 11, 556.	1.6	2
4	Arrhythmia development during inhibition of small-conductance calcium-activated potassium channels in acute myocardial infarction in a porcine model. Europace, 2019, 21, 1584-1593.	0.7	13
5	The KCa2 Channel Inhibitor AP14145, But Not Dofetilide or Ondansetron, Provides Functional Atrial Selectivity in Guinea Pig Hearts. Frontiers in Pharmacology, 2019, 10, 668.	1.6	10
6	The multimodal antidepressant vortioxetine may facilitate pyramidal cell firing by inhibition of 5-HT3 receptor expressing interneurons: An in vitro study in rat hippocampus slices. Brain Research, 2018, 1689, 1-11.	1.1	20
7	The sodium channel activator Lu AE98134 normalizes the altered firing properties of fast spiking interneurons in Dlx5/6+/a^° mice. Neuroscience Letters, 2018, 662, 29-35.	1.0	5
8	Selective Na _V 1.1 activation rescues Dravet syndrome mice from seizures and premature death. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8077-E8085.	3.3	105
9	Pharmacological rescue of mutated Kv3.1 ion-channel linked to progressive myoclonus epilepsies. European Journal of Pharmacology, 2018, 833, 255-262.	1.7	12
10	Kv3.1/Kv3.2 channel positive modulators enable faster activating kinetics and increase firing frequency in fast-spiking GABAergic interneurons. Neuropharmacology, 2017, 118, 102-112.	2.0	37
11	Novel selective PDE type 1 inhibitors cause vasodilatation and lower blood pressure in rats. British Journal of Pharmacology, 2017, 174, 2563-2575.	2.7	31
12	Termination of Vernakalant-Resistant Atrial Fibrillation by Inhibition of Small-Conductance Ca ²⁺ -Activated K ⁺ Channels in Pigs. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	2.1	62
13	PDE1A inhibition elicits cGMPâ€dependent relaxation of rat mesenteric arteries. British Journal of Pharmacology, 2017, 174, 4186-4198.	2.7	22
14	A new negative allosteric modulator, AP14145, for the study of small conductance calciumâ€activated potassium (K _{Ca} 2) channels. British Journal of Pharmacology, 2017, 174, 4396-4408.	2.7	27
15	A small molecule activator of Na _v 1.1 channels increases fastâ€spiking interneuron excitability and GABAergic transmission <i>inÂvitro</i> and has antiâ€convulsive effects <i>inÂvivo</i> . European Journal of Neuroscience, 2017, 46, 1887-1896.	1.2	22
16	Antiarrhythmic effect of the Ca2+-activated K+ (SK) channel inhibitor ICA combined with either amiodarone or dofetilide in an isolated heart model of atrial fibrillation. Pflugers Archiv European Journal of Physiology, 2016, 468, 1853-1863.	1.3	13
17	Role of Calcium-activated Potassium Channels in Atrial Fibrillation Pathophysiology and Therapy. Journal of Cardiovascular Pharmacology, 2015, 66, 441-448.	0.8	35
18	Synergistic antiarrhythmic effect of combining inhibition of Ca2+-activated K+ (SK) channels and voltage-gated Na+ channels in an isolated heart model of atrial fibrillation. Heart Rhythm, 2015, 12, 409-418.	0.3	28

Morten Grunnet

#	Article	IF	CITATIONS
19	Targeting α4β2 Nicotinic Acetylcholine Receptors in Central Nervous System Disorders: Perspectives on Positive Allosteric Modulation as a Therapeutic Approach. Basic and Clinical Pharmacology and Toxicology, 2015, 116, 187-200.	1.2	40
20	Common and Rare Variants in SCN10A Modulate the Risk of Atrial Fibrillation. Circulation: Cardiovascular Genetics, 2015, 8, 64-73.	5.1	50
21	Identification and Electrophysiological Evaluation of 2-Methylbenzamide Derivatives as Na _v 1.1 Modulators. ACS Chemical Neuroscience, 2015, 6, 1302-1308.	1.7	8
22	Pharmacologic inhibition of small-conductance calcium-activated potassium (SK) channels by NS8593 reveals atrial antiarrhythmic potential in horses. Heart Rhythm, 2015, 12, 825-835.	0.3	70
23	Cardiac SK channels: Friend or foe?. Heart Rhythm, 2015, 12, 1016-1017.	0.3	2
24	Biophysical characterization of KV3.1 potassium channel activating compounds. European Journal of Pharmacology, 2015, 758, 164-170.	1.7	20
25	Role of Small-Conductance Calcium-Activated Potassium Channels in Atrial Electrophysiology and Fibrillation in the Dog. Circulation, 2014, 129, 430-440.	1.6	153
26	Structural insight into concealed long QT type 1. Heart Rhythm, 2014, 11, 469-470.	0.3	0
27	Therapeutic potential of NaV1.1 activators. Trends in Pharmacological Sciences, 2014, 35, 113-118.	4.0	39
28	Cardiac Potassium Channel Subtypes: New Roles in Repolarization and Arrhythmia. Physiological Reviews, 2014, 94, 609-653.	13.1	181
29	Neuropharmacological modulation of the P3-like event-related potential in a rat two-tone auditory discrimination task with modafinil and NS9283, a positive allosteric modulator of α4β2 nAChRs. Neuropharmacology, 2014, 79, 444-455.	2.0	20
30	Selective potentiation of (α4)3(β2)2 nicotinic acetylcholine receptors augments amplitudes of prefrontal acetylcholine- and nicotine-evoked glutamatergic transients in rats. Biochemical Pharmacology, 2013, 86, 1487-1496.	2.0	18
31	Antiâ€hypertensive treatment preserves appetite suppression while preventing cardiovascular adverse effects of tesofensine in rats. Obesity, 2013, 21, 985-992.	1.5	19
32	The Duration of Pacing-induced Atrial Fibrillation Is Reduced in Vivo by Inhibition of Small Conductance Ca2+-activated K+ Channels. Journal of Cardiovascular Pharmacology, 2011, 57, 672-681.	0.8	80
33	The protective effect of brief acidic cardiac reperfusion after ischemia is not mimicked by inhibition of the Na + /H + exchanger NHE1 or of phospholipase A2â€VI (PLA2â€VI). FASEB Journal, 2011, 25, 1097.12.	0.2	0
34	Inhibition of Small-Conductance Ca ²⁺ -Activated K ⁺ Channels Terminates and Protects Against Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 2010, 3, 380-390.	2.1	164
35	Fetal arrhythmia caused by dysregulation of HERG channels. Heart Rhythm, 2008, 5, 562-564.	0.3	4