
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4352443/publications.pdf Version: 2024-02-01

Δειλλενι \λλιι

#	Article	IF	CITATIONS
1	A DNAzyme-Gold Nanoparticle Probe for Uranyl Ion in Living Cells. Journal of the American Chemical Society, 2013, 135, 5254-5257.	6.6	376
2	One-pot extraction combined with metal-free photochemical aerobic oxidative desulfurization in deep eutectic solvent. Green Chemistry, 2015, 17, 2464-2472.	4.6	232
3	Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic. Chemical Engineering Journal, 2014, 243, 60-67.	6.6	207
4	A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization. Chemical Communications, 2016, 52, 144-147.	2.2	206
5	Taming interfacial electronic properties of platinum nanoparticles on vacancy-abundant boron nitride nanosheets for enhanced catalysis. Nature Communications, 2017, 8, 15291.	5.8	200
6	Pyridinium-based temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuels. Chemical Engineering Journal, 2013, 229, 250-256.	6.6	174
7	Few-layered graphene-like boron nitride induced a remarkable adsorption capacity for dibenzothiophene in fuels. Green Chemistry, 2015, 17, 1647-1656.	4.6	167
8	Graphene-Analogue Hexagonal BN Supported with Tungsten-based Ionic Liquid for Oxidative Desulfurization of Fuels. ACS Sustainable Chemistry and Engineering, 2015, 3, 186-194.	3.2	167
9	Taming electronic properties of boron nitride nanosheets as metal-free catalysts for aerobic oxidative desulfurization of fuels. Green Chemistry, 2018, 20, 4453-4460.	4.6	128
10	Carbon-doped porous boron nitride: metal-free adsorbents for sulfur removal from fuels. Journal of Materials Chemistry A, 2015, 3, 12738-12747.	5.2	126
11	Copper nanoparticles advance electron mobility of graphene-like boron nitride for enhanced aerobic oxidative desulfurization. Chemical Engineering Journal, 2016, 301, 123-131.	6.6	115
12	Boosting aerobic oxidative desulfurization performance in fuel oil via strong metal-edge interactions between Pt and h-BN. Chemical Engineering Journal, 2020, 380, 122526.	6.6	108
13	Rapid gas-assisted exfoliation promises V2O5 nanosheets for high performance lithium-sulfur batteries. Nano Energy, 2020, 67, 104253.	8.2	106
14	Vibrational analysis and formation mechanism of typical deep eutectic solvents: An experimental and theoretical study. Journal of Molecular Graphics and Modelling, 2016, 68, 158-175.	1.3	105
15	Kinetics and mechanism for oxidative desulfurization of fuels catalyzed by peroxo-molybdenum amino acid complexes in water-immiscible ionic liquids. Journal of Molecular Catalysis A, 2011, 336, 16-22.	4.8	91
16	Engineering a tandem leaching system for the highly selective recycling of valuable metals from spent Li-ion batteries. Green Chemistry, 2021, 23, 2177-2184.	4.6	91
17	Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources. Chemical Engineering Journal, 2020, 392, 123731.	6.6	88
18	Tuning the Chemical Hardness of Boron Nitride Nanosheets by Doping Carbon for Enhanced Adsorption Capacity. ACS Omega, 2017, 2, 5385-5394.	1.6	86

#	Article	IF	CITATIONS
19	Harnessing strong metal–support interactions via a reverse route. Nature Communications, 2020, 11, 3042.	5.8	84
20	Hexagonal boron nitride: A metal-free catalyst for deep oxidative desulfurization of fuel oils. Green Energy and Environment, 2020, 5, 166-172.	4.7	83
21	Radical Chemistry and Reaction Mechanisms of Propane Oxidative Dehydrogenation over Hexagonal Boron Nitride Catalysts. Angewandte Chemie - International Edition, 2020, 59, 8042-8046.	7.2	83
22	Boosting electrosynthesis of ammonia on surface-engineered MXene Ti3C2. Nano Energy, 2020, 72, 104681.	8.2	82
23	A large number of low coordinated atoms in boron nitride for outstanding adsorptive desulfurization performance. Green Chemistry, 2016, 18, 3040-3047.	4.6	79
24	Taming Interfacial Oxygen Vacancies of Amphiphilic Tungsten Oxide for Enhanced Catalysis in Oxidative Desulfurization. ACS Sustainable Chemistry and Engineering, 2017, 5, 8930-8938.	3.2	75
25	Synthesis of boron nitride nanosheets with N-defects for efficient tetracycline antibiotics adsorptive removal. Chemical Engineering Journal, 2020, 387, 124138.	6.6	75
26	Dynamically-generated TiO2 active site on MXene Ti3C2: Boosting reactive desulfurization. Chemical Engineering Journal, 2021, 416, 129022.	6.6	73
27	Recent advances in 3D printing for catalytic applications. Chemical Engineering Journal, 2022, 433, 134341.	6.6	70
28	Controllable Fabrication of Tungsten Oxide Nanoparticles Confined in Grapheneâ€Analogous Boron Nitride as an Efficient Desulfurization Catalyst. Chemistry - A European Journal, 2015, 21, 15421-15427.	1.7	63
29	Tailoring Nâ€Terminated Defective Edges of Porous Boron Nitride for Enhanced Aerobic Catalysis. Small, 2017, 13, 1701857.	5.2	60
30	Immobilizing Highly Catalytically Molybdenum Oxide Nanoparticles on Graphene-Analogous BN: Stable Heterogeneous Catalysts with Enhanced Aerobic Oxidative Desulfurization Performance. Industrial & Engineering Chemistry Research, 2019, 58, 863-871.	1.8	60
31	Hierarchical porous boron nitride with boron vacancies for improved adsorption performance to antibiotics. Journal of Colloid and Interface Science, 2021, 584, 154-163.	5.0	60
32	Silicotungstic acid immobilized on lamellar hexagonal boron nitride for oxidative desulfurization of fuel components. Fuel, 2018, 213, 12-21.	3.4	55
33	A Novel Reaction-Controlled Foam-Type Polyoxometalate Catalyst for Deep Oxidative Desulfurization of Fuels. Industrial & Engineering Chemistry Research, 2013, 52, 17399-17406.	1.8	54
34	Facile Synthesis of Highly Porous Metal Oxides by Mechanochemical Nanocasting. Chemistry of Materials, 2018, 30, 2924-2929.	3.2	54
35	Deep oxidative desulfurization with a microporous hexagonal boron nitride confining phosphotungstic acid catalyst. Journal of Molecular Catalysis A, 2016, 423, 207-215.	4.8	51
36	3D-printing of integrated spheres as a superior support of phosphotungstic acid for deep oxidative desulfurization of fuel. Journal of Energy Chemistry, 2020, 45, 91-97.	7.1	50

#	Article	IF	CITATIONS
37	Chemical Control over Cellular Uptake of Organic Nanoparticles by Fine Tuning Surface Functional Groups. ACS Nano, 2015, 9, 10227-10236.	7.3	47
38	Photocaged DNAzymes as a General Method for Sensing Metal Ions in Living Cells. Angewandte Chemie, 2014, 126, 14018-14022.	1.6	43
39	Lattice-Refined Transition-Metal Oxides via Ball Milling for Boosted Catalytic Oxidation Performance. ACS Applied Materials & Interfaces, 2019, 11, 36666-36675.	4.0	42
40	O ₂ Activation and Oxidative Dehydrogenation of Propane on Hexagonal Boron Nitride: Mechanism Revisited. Journal of Physical Chemistry C, 2019, 123, 2256-2266.	1.5	42
41	Mechanical exfoliation of boron carbide: A metal-free catalyst for aerobic oxidative desulfurization in fuel. Journal of Hazardous Materials, 2020, 391, 122183.	6.5	41
42	Graphene-like BN@SiO2 nanocomposites as efficient sorbents for solid-phase extraction of Rhodamine B and Rhodamine 6G from food samples. Food Chemistry, 2020, 320, 126666.	4.2	40
43	BN/ZIF-8 derived carbon hybrid materials for adsorptive desulfurization: Insights into adsorptive property and reaction kinetics. Fuel, 2021, 288, 119685.	3.4	40
44	Development of novel graphene-like layered hexagonal boron nitride for adsorptive removal of antibiotic gatifloxacin from aqueous solution. Green Chemistry Letters and Reviews, 2014, 7, 330-336.	2.1	35
45	One-Pot Extraction and Oxidative Desulfurization of Fuels with Molecular Oxygen in Low-Cost Metal-Based Ionic Liquids. Energy & Fuels, 2017, 31, 1376-1382.	2.5	35
46	Gas-assisted exfoliation of boron nitride nanosheets enhancing adsorption performance. Ceramics International, 2019, 45, 18838-18843.	2.3	35
47	Synthesis of hierarchical porous BCN using ternary deep eutectic solvent as precursor and template for aerobic oxidative desulfurization. Microporous and Mesoporous Materials, 2020, 293, 109788.	2.2	33
48	Synergistic Catalysis of the PtCu Alloy on Ultrathin BN Nanosheets for Accelerated Oxidative Desulfurization. ACS Sustainable Chemistry and Engineering, 2020, 8, 2032-2039.	3.2	33
49	Tailoring Electronic Properties of Porphyrin Manganese on Boron Nitride for Enhancing Aerobic Oxidative Desulfurization at Room Temperature. ACS Sustainable Chemistry and Engineering, 2020, 8, 1015-1022.	3.2	30
50	Pretreatment of sugarcane bagasse with deep eutectic solvents affect the structure and morphology of lignin. Industrial Crops and Products, 2021, 173, 114108.	2.5	30
51	Boron and Nitride Dual vacancies on Metalâ€Free Oxygen Doping Boron Nitride as Initiating Sites for Deep Aerobic Oxidative Desulfurization. ChemCatChem, 2020, 12, 1734-1742.	1.8	28
52	Metal-organic framework encapsulated high-loaded phosphomolybdic acid: A highly stable catalyst for oxidative desulfurization of 4,6-dimethyldibenzothiophene. Fuel, 2022, 309, 122143.	3.4	28
53	Graphene-like boron nitride anchored Brönsted acid ionic liquids as metal-free catalyst for advanced oxidation process. Molecular Catalysis, 2017, 436, 53-59.	1.0	27
54	Phosphomolybdic acid immobilized on ionic liquid-modified hexagonal boron nitride for oxidative desulfurization of fuel. RSC Advances, 2017, 7, 54266-54276.	1.7	26

#	Article	IF	CITATIONS
55	The mechanism of thiophene oxidation on metal-free two-dimensional hexagonal boron nitride. Physical Chemistry Chemical Physics, 2019, 21, 21867-21874.	1.3	26
56	Synthesis of N,O-Doped Porous Graphene from Petroleum Coke for Deep Oxidative Desulfurization of Fuel. Energy & Fuels, 2019, 33, 8302-8311.	2.5	25
57	Tuning interfacial electronic properties of carbon nitride as an efficient catalyst for ultra-deep oxidative desulfurization of fuels. Molecular Catalysis, 2019, 468, 100-108.	1.0	25
58	High-entropy oxide stabilized molybdenum oxide via high temperature for deep oxidative desulfurization. Applied Materials Today, 2020, 20, 100680.	2.3	24
59	Phosphomolybdic acid encapsulated in ZIF-8-based porous ionic liquids for reactive extraction desulfurization of fuels. Inorganic Chemistry Frontiers, 2021, 9, 165-178.	3.0	24
60	Gas-exfoliated porous monolayer boron nitride for enhanced aerobic oxidative desulfurization performance. Nanotechnology, 2018, 29, 025604.	1.3	23
61	Extraction combined catalytic oxidation desulfurization of petcoke in ionic liquid under mild conditions. Fuel, 2020, 260, 116200.	3.4	23
62	Heterogenization of homogenous oxidative desulfurization reaction on graphene-like boron nitride with a peroxomolybdate ionic liquid. RSC Advances, 2016, 6, 140-147.	1.7	22
63	Sustainable synthesis of alkaline metal oxide-mesoporous carbons <i>via</i> mechanochemical coordination self-assembly. Journal of Materials Chemistry A, 2017, 5, 23446-23452.	5.2	22
64	Multiple Promotional Effects of Vanadium Oxide on Boron Nitride for Oxidative Dehydrogenation of Propane. Jacs Au, 2022, 2, 1096-1104.	3.6	20
65	Applications of Synchrotronâ€Based Spectroscopic Techniques in Studying Nucleic Acids and Nucleic Acidâ€Functionalized Nanomaterials. Advanced Materials, 2014, 26, 7849-7872.	11.1	19
66	Fabrication of carbon nanotubes encapsulated cobalt phosphide on graphene: Cobalt promoted hydrogen evolution reaction performance. Electrochimica Acta, 2020, 330, 135213.	2.6	19
67	Three-dimensional Ce-MOFs-derived Ce@C-BN nanobundles for adsorptive desulfurization. Applied Surface Science, 2022, 590, 152926.	3.1	19
68	Ultraâ€Stable and Highâ€Cobaltâ€Loaded Cobalt@Ordered Mesoporous Carbon Catalysts: Allâ€inâ€One Deoxygenation of Ketone into Alkylbenzene. ChemCatChem, 2018, 10, 3299-3304.	1.8	17
69	Few-layered graphene via gas-driven exfoliation for enhanced supercapacitive performance. Journal of Energy Chemistry, 2018, 27, 1509-1515.	7.1	17
70	Carbon nitride mediated strong metal–support interactions in a Au/TiO ₂ catalyst for aerobic oxidative desulfurization. Inorganic Chemistry Frontiers, 2020, 7, 1212-1219.	3.0	17
71	Deep eutectic solvent-induced high-entropy structures in boron nitride for boosted initiation of aerobic oxidative desulfurization of diesel. Applied Surface Science, 2020, 529, 146980.	3.1	16
72	Fabrication of CNTs encapsulated nickel-nickel phosphide nanoparticles on graphene for remarkable hydrogen evolution reaction performance. Journal of Electroanalytical Chemistry, 2019, 846, 113142.	1.9	15

#	Article	IF	CITATIONS
73	Preparation of metal ions impregnated polystyrene resins for adsorption of antibiotics contaminants in aquatic environment. Journal of Applied Polymer Science, 2015, 132, .	1.3	14
74	Fabrication of oxygen-defective tungsten oxide nanorods for deep oxidative desulfurization of fuel. Petroleum Science, 2018, 15, 849-856.	2.4	13
75	Promoting Pt catalysis for CO oxidation <i>via</i> the Mott–Schottky effect. Nanoscale, 2019, 11, 18568-18574.	2.8	13
76	Engineering Highly Dispersed Pt Species by Defects for Boosting the Reactive Desulfurization Performance. Industrial & amp; Engineering Chemistry Research, 2021, 60, 2828-2837.	1.8	13
77	Binary molten salts mediated defect engineering on hexagonal boron nitride catalyst with long-term stability for aerobic oxidative desulfurization. Applied Surface Science, 2021, 558, 149724.	3.1	13
78	Synergistic Effect of Au–Cu Alloy Nanoparticles on TiO ₂ for Efficient Aerobic Catalytic Oxidative Desulfurization. Industrial & Engineering Chemistry Research, 2022, 61, 6292-6300.	1.8	12
79	Light irradiation induced aerobic oxidative deep-desulfurization of fuel in ionic liquid. RSC Advances, 2015, 5, 99927-99934.	1.7	9
80	Synthesis of porous carbon <i>via</i> a waste tire leavening strategy for adsorptive desulfurization. RSC Advances, 2019, 9, 30575-30580.	1.7	8
81	Heteroatom Bridging Strategy in Carbon-Based Catalysts for Enhanced Oxidative Desulfurization Performance. Inorganic Chemistry, 2022, 61, 633-642.	1.9	8
82	Engineering 3D-printed aqueous colloidal ceramic slurry for direct ink writing. Green Chemical Engineering, 2023, 4, 73-80.	3.3	8
83	Fabrication of functional dual-mesoporous silicas by using peroxo-tungstate ionic liquid and their applications in oxidative desulfurization. Journal of Porous Materials, 2015, 22, 1227-1233.	1.3	5
84	Controllable electronic effect via deep eutectic solvents modification for boosted aerobic oxidative desulfurization. Molecular Catalysis, 2021, 512, 111757.	1.0	3
85	Aerobic ultra-deep desulfurization of diesel oil triggered by porous carbon supported organic molecular N-hydroxyphthalimide catalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128455.	2.3	2
86	Interface engineering of quaternary ammonium phosphotungstate for efficient oxidative desulfurization of high-sulfur petroleum coke. Petroleum Science and Technology, 2023, 41, 86-103.	0.7	0