Andrew G Brooks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4352195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mouse Mx1 Inhibits Herpes Simplex Virus Type 1 Genomic Replication and Late Gene Expression <i>In Vitro</i> and Prevents Lesion Formation in the Mouse Zosteriform Model. Journal of Virology, 2022, 96, .	3.4	6
2	Structural plasticity of KIR2DL2 and KIR2DL3 enables altered docking geometries atop HLA-C. Nature Communications, 2021, 12, 2173.	12.8	21
3	Natural killer cell receptors regulate responses of HLA-E–restricted T cells. Science Immunology, 2021, 6, .	11.9	13
4	CD8+ T cell landscape in Indigenous and non-Indigenous people restricted by influenza mortality-associated HLA-A*24:02 allomorph. Nature Communications, 2021, 12, 2931.	12.8	20
5	IFITM Proteins That Restrict the Early Stages of Respiratory Virus Infection Do Not Influence Late-Stage Replication. Journal of Virology, 2021, 95, e0083721.	3.4	11
6	The Role of the HLA Class I α2 Helix in Determining Ligand Hierarchy for the Killer Cell Ig-like Receptor 3DL1. Journal of Immunology, 2021, 206, 849-860.	0.8	12
7	IFITM3 and type I interferons are important for the control of influenza A virus replication in murine macrophages. Virology, 2020, 540, 17-22.	2.4	17
8	HLA-E–restricted CD8+ T Lymphocytes Efficiently Control Mycobacterium tuberculosis and HIV-1 Coinfection. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 430-439.	2.9	13
9	Estradiol Enhances Antiviral CD4 ⁺ Tissue-Resident Memory T Cell Responses following Mucosal Herpes Simplex Virus 2 Vaccination through an IL-17-Mediated Pathway. Journal of Virology, 2020, 95, .	3.4	15
10	Cytomegalovirus replication is associated with enrichment of distinct γδT cell subsets following lung transplantation: A novel therapeutic approach?. Journal of Heart and Lung Transplantation, 2020, 39, 1300-1312.	0.6	7
11	The molecular basis of how buried human leukocyte antigen polymorphism modulates natural killer cell function. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11636-11647.	7.1	16
12	Harnessing HLAâ€Eâ€restricted CD8 T lymphocytes for adoptive cell therapy of patients with severe COVIDâ€19. British Journal of Haematology, 2020, 190, e185-e187.	2.5	17
13	Downregulation of MHC Class I Expression by Influenza A and B Viruses. Frontiers in Immunology, 2019, 10, 1158.	4.8	65
14	Enrichment of Cytomegalovirus-induced NKG2C+ Natural Killer Cells in the Lung Allograft. Transplantation, 2019, 103, 1689-1699.	1.0	9
15	Classical Type 1 Dendritic Cells Dominate Priming of Th1 Responses to Herpes Simplex Virus Type 1 Skin Infection. Journal of Immunology, 2019, 202, 653-663.	0.8	27
16	Unique Transcriptional Architecture in Airway Epithelial Cells and Macrophages Shapes Distinct Responses following Influenza Virus Infection Ex Vivo. Journal of Virology, 2019, 93, .	3.4	19
17	Broadening our knowledge of the differences between HIV-2 and HIV-1 innate sensing. Aids, 2019, 33, 153-154.	2.2	1
18	Changes in Gut Microbiota Prior to Influenza A Virus Infection Do Not Affect Immune Responses in Pups or Juvenile Mice. Frontiers in Cellular and Infection Microbiology, 2018, 8, 319.	3.9	7

#	Article	IF	CITATIONS
19	Activating killerâ€cell immunoglobulinâ€like receptor haplotype influences clinical outcome following HLAâ€matched sibling haematopoietic stem cell transplantation. Hla, 2018, 92, 74-82.	0.6	11
20	Killer cell immunoglobulin–like receptor 3DL1 variation modifies HLA-B*57 protection against HIV-1. Journal of Clinical Investigation, 2018, 128, 1903-1912.	8.2	52
21	MHC-I peptides get out of the groove and enable a novel mechanism of HIV-1 escape. Nature Structural and Molecular Biology, 2017, 24, 387-394.	8.2	83
22	Nasal-associated lymphoid tissues (NALTs) support the recall but not priming of influenza virus-specific cytotoxic T cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5225-5230.	7.1	49
23	Resident memory CD8 ⁺ T cells in the upper respiratory tract prevent pulmonary influenza virus infection. Science Immunology, 2017, 2, .	11.9	205
24	The molecular basis for peptide repertoire selection in the human leukocyte antigen (HLA) C*06:02 molecule. Journal of Biological Chemistry, 2017, 292, 17203-17215.	3.4	34
25	A conserved energetic footprint underpins recognition of human leukocyte antigen-E by two distinct αβ T cell receptors. Journal of Biological Chemistry, 2017, 292, 21149-21158.	3.4	20
26	Pattern recognition receptor immunomodulation of innate immunity as a strategy to limit the impact of influenza virus. Journal of Leukocyte Biology, 2017, 101, 851-861.	3.3	20
27	Host Cell Restriction Factors that Limit Influenza A Infection. Viruses, 2017, 9, 376.	3.3	58
28	Recognition of the Major Histocompatibility Complex (MHC) Class Ib Molecule H2-Q10 by the Natural Killer Cell Receptor Ly49C. Journal of Biological Chemistry, 2016, 291, 18740-18752.	3.4	19
29	Endocytic function is critical for influenza A virus infection via DC-SIGN and L-SIGN. Scientific Reports, 2016, 6, 19428.	3.3	44
30	Killer cell immunoglobulin-like receptor 3DL1 polymorphism defines distinct hierarchies of HLA class I recognition. Journal of Experimental Medicine, 2016, 213, 791-807.	8.5	81
31	Neutralizing inhibitors in the airways of naÃ ⁻ ve ferrets do not play a major role in modulating the virulence of H3 subtype influenza A viruses. Virology, 2016, 494, 143-157.	2.4	3
32	DC-SIGN and L-SIGN Are Attachment Factors That Promote Infection of Target Cells by Human Metapneumovirus in the Presence or Absence of Cellular Glycosaminoglycans. Journal of Virology, 2016, 90, 7848-7863.	3.4	9
33	The C-type Lectin Langerin Functions as a Receptor for Attachment and Infectious Entry of Influenza A Virus. Journal of Virology, 2016, 90, 206-221.	3.4	51
34	A bird's eye view of <scp>NK</scp> cell receptor interactions with their <scp>MHC</scp> class I ligands. Immunological Reviews, 2015, 267, 148-166.	6.0	96
35	Limited Internodal Migration of T Follicular Helper Cells after Peripheral Infection with Herpes Simplex Virus-1. Journal of Immunology, 2015, 195, 4892-4899.	0.8	0
36	Peptide-Dependent Recognition of HLA-B*57:01 by KIR3DS1. Journal of Virology, 2015, 89, 5213-5221.	3.4	67

#	Article	IF	CITATIONS
37	The Structure of the Atypical Killer Cell Immunoglobulin-like Receptor, KIR2DL4. Journal of Biological Chemistry, 2015, 290, 10460-10471.	3.4	38
38	Infection of Mouse Macrophages by Seasonal Influenza Viruses Can Be Restricted at the Level of Virus Entry and at a Late Stage in the Virus Life Cycle. Journal of Virology, 2015, 89, 12319-12329.	3.4	42
39	Spatiotemporally Distinct Interactions with Dendritic Cell Subsets Facilitates CD4+ and CD8+ T Cell Activation to Localized Viral Infection. Immunity, 2015, 43, 554-565.	14.3	255
40	The Interaction of KIR3DL1*001 with HLA Class I Molecules Is Dependent upon Molecular Microarchitecture within the Bw4 Epitope. Journal of Immunology, 2015, 194, 781-789.	0.8	25
41	The Presence of HLA-E-Restricted, CMV-Specific CD8+ T Cells in the Blood of Lung Transplant Recipients Correlates with Chronic Allograft Rejection. PLoS ONE, 2015, 10, e0135972.	2.5	18
42	Endogenous Murine BST-2/Tetherin Is Not a Major Restriction Factor of Influenza A Virus Infection. PLoS ONE, 2015, 10, e0142925.	2.5	12
43	The Macrophage Galactose-Type Lectin Can Function as an Attachment and Entry Receptor for Influenza Virus. Journal of Virology, 2014, 88, 1659-1672.	3.4	41
44	Distinct APC Subtypes Drive Spatially Segregated CD4+ and CD8+ T-Cell Effector Activity during Skin Infection with HSV-1. PLoS Pathogens, 2014, 10, e1004303.	4.7	75
45	The Ly49 natural killer cell receptors: a versatile tool for viral selfâ€discrimination. Immunology and Cell Biology, 2014, 92, 214-220.	2.3	16
46	Mutational and Structural Analysis of KIR3DL1 Reveals a Lineage-Defining Allotypic Dimorphism That Impacts Both HLA and Peptide Sensitivity. Journal of Immunology, 2014, 192, 2875-2884.	0.8	48
47	A Single Amino Acid Substitution in the Hemagglutinin of H3N2 Subtype Influenza A Viruses Is Associated with Resistance to the Long Pentraxin PTX3 and Enhanced Virulence in Mice. Journal of Immunology, 2014, 192, 271-281.	0.8	30
48	The Structure of the Cytomegalovirus-Encoded m04 Glycoprotein, a Prototypical Member of the m02 Family of Immunoevasins. Journal of Biological Chemistry, 2014, 289, 23753-23763.	3.4	15
49	Targeting of a natural killer cell receptor family by a viral immunoevasin. Nature Immunology, 2013, 14, 699-705.	14.5	41
50	Age-Associated Cross-reactive Antibody-Dependent Cellular Cytotoxicity Toward 2009 Pandemic Influenza A Virus Subtype H1N1. Journal of Infectious Diseases, 2013, 208, 1051-1061.	4.0	62
51	Polymorphism in Human Cytomegalovirus UL40 Impacts on Recognition of Human Leukocyte Antigen-E (HLA-E) by Natural Killer Cells. Journal of Biological Chemistry, 2013, 288, 8679-8690.	3.4	111
52	Cross-Reactive Influenza-Specific Antibody-Dependent Cellular Cytotoxicity Antibodies in the Absence of Neutralizing Antibodies. Journal of Immunology, 2013, 190, 1837-1848.	0.8	200
53	Addition of Glycosylation to Influenza A Virus Hemagglutinin Modulates Antibody-Mediated Recognition of H1N1 2009 Pandemic Viruses. Journal of Immunology, 2013, 190, 2169-2177.	0.8	45
54	Soluble Host Defense Lectins in Innate Immunity to Influenza Virus. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-14.	3.0	34

#	Article	IF	CITATIONS
55	MHC Class Ib-Restricted CD8 T Cells Differ in Dependence on CD4 T Cell Help and CD28 Costimulation over the Course of Mouse Polyomavirus Infection. Journal of Immunology, 2012, 188, 3071-3079.	0.8	7
56	The fate of influenza A virus after infection of human macrophages and dendritic cells. Journal of General Virology, 2012, 93, 2315-2325.	2.9	59
57	Cell-surface receptors on macrophages and dendritic cells for attachment and entry of influenza virus. Journal of Leukocyte Biology, 2012, 92, 97-106.	3.3	48
58	Neutrophils sustain effective CD8 ⁺ Tâ€cell responses in the respiratory tract following influenza infection. Immunology and Cell Biology, 2012, 90, 197-205.	2.3	89
59	Inhibition of lectinâ€mediated innate host defences in vivo modulates disease severity during influenza virus infection. Immunology and Cell Biology, 2011, 89, 482-491.	2.3	23
60	Receptor specificity of the influenza virus hemagglutinin modulates sensitivity to soluble collectins of the innate immune system and virulence in mice. Virology, 2011, 413, 128-138.	2.4	8
61	Glycosylation of the hemagglutinin modulates the sensitivity of H3N2 influenza viruses to innate proteins in airway secretions and virulence in mice. Virology, 2011, 413, 84-92.	2.4	48
62	Diverse roles of non-diverse molecules: MHC class Ib molecules in host defense and control of autoimmunity. Current Opinion in Immunology, 2011, 23, 104-110.	5.5	30
63	Correlation between sialic acid expression and infection of murine macrophages by different strains of influenza virus. Microbes and Infection, 2011, 13, 202-207.	1.9	24
64	N-Linked Glycosylation Facilitates Sialic Acid-Independent Attachment and Entry of Influenza A Viruses into Cells Expressing DC-SIGN or L-SIGN. Journal of Virology, 2011, 85, 2990-3000.	3.4	113
65	Killer cell immunoglobulin-like receptor 3DL1-mediated recognition of human leukocyte antigen B. Nature, 2011, 479, 401-405.	27.8	174
66	Specific Sites of <i>N</i> -Linked Glycosylation on the Hemagglutinin of H1N1 Subtype Influenza A Virus Determine Sensitivity to Inhibitors of the Innate Immune System and Virulence in Mice. Journal of Immunology, 2011, 187, 1884-1894.	0.8	74
67	The Role of Neutrophils during Mild and Severe Influenza Virus Infections of Mice. PLoS ONE, 2011, 6, e17618.	2.5	155
68	Critical Role of Airway Macrophages in Modulating Disease Severity during Influenza Virus Infection of Mice. Journal of Virology, 2010, 84, 7569-7580.	3.4	210
69	Gr-1+ cells, but not neutrophils, limit virus replication and lesion development following flank infection of mice with herpes simplex virus type-1. Virology, 2010, 407, 143-151.	2.4	30
70	Influenza viruses differ in ability to infect macrophages and to induce a local inflammatory response following intraperitoneal injection of mice. Immunology and Cell Biology, 2010, 88, 641-650.	2.3	32
71	Pandemic H1N1 Influenza A Viruses Are Resistant to the Antiviral Activities of Innate Immune Proteins of the Collectin and Pentraxin Superfamilies. Journal of Immunology, 2010, 185, 4284-4291.	0.8	95
72	Depletion of Gr-1+, but not Ly6G+, immune cells exacerbates virus replication and disease in an intranasal model of herpes simplex virus type 1 infection. Journal of General Virology, 2010, 91, 2158-2166.	2.9	81

#	Article	IF	CITATIONS
73	Neutrophils Ameliorate Lung Injury and the Development of Severe Disease during Influenza Infection. Journal of Immunology, 2009, 183, 7441-7450.	0.8	275
74	The Shaping of T Cell Receptor Recognition by Self-Tolerance. Immunity, 2009, 30, 193-203.	14.3	94
75	T Cell Allorecognition via Molecular Mimicry. Immunity, 2009, 31, 897-908.	14.3	232
76	Loss of a single N-linked glycan from the hemagglutinin of influenza virus is associated with resistance to collectins and increased virulence in mice. Respiratory Research, 2009, 10, 117.	3.6	52
77	Porcine cells express more than one functional ligand for the human lymphocyte activating receptor NKG2D. Xenotransplantation, 2008, 15, 321-332.	2.8	23
78	The role of neutrophils in the upper and lower respiratory tract during influenza virus infection of mice. Respiratory Research, 2008, 9, 57.	3.6	146
79	Subtle Changes in Peptide Conformation Profoundly Affect Recognition of the Non-Classical MHC Class I Molecule HLA-E by the CD94–NKG2 Natural Killer Cell Receptors. Journal of Molecular Biology, 2008, 377, 1297-1303.	4.2	88
80	Antiviral Activity of the Long Chain Pentraxin PTX3 against Influenza Viruses. Journal of Immunology, 2008, 180, 3391-3398.	0.8	196
81	CD94-NKG2A recognition of human leukocyte antigen (HLA)-E bound to an HLA class I leader sequence. Journal of Experimental Medicine, 2008, 205, 725-735.	8.5	198
82	The Heterodimeric Assembly of the CD94-NKG2 Receptor Family and Implications for Human Leukocyte Antigen-E Recognition. Immunity, 2007, 27, 900-911.	14.3	87
83	Glycosylation as a Target for Recognition of Influenza Viruses by the Innate Immune System. , 2007, 598, 279-292.		61
84	The human cytomegalovirus glycoprotein UL16 traffics through the plasma membrane and the nuclear envelope. Cellular Microbiology, 2006, 8, 581-590.	2.1	20
85	Structural basis for a major histocompatibility complex class Ib–restricted T cell response. Nature Immunology, 2006, 7, 256-264.	14.5	109
86	NK cells contribute to the early clearance of HSV-1 from the lung but cannot control replication in the central nervous system following intranasal infection. European Journal of Immunology, 2006, 36, 897-905.	2.9	45
87	Crystal structure of the human T cell receptor CD3ÂÂ heterodimer complexed to the therapeutic mAb OKT3. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7675-7680.	7.1	148
88	Natural HLA Class I Polymorphism Controls the Pathway of Antigen Presentation and Susceptibility to Viral Evasion. Journal of Experimental Medicine, 2004, 200, 13-24.	8.5	159
89	Herpes Simplex Virus-Specific CD8+ T Cells Can Clear Established Lytic Infections from Skin and Nerves and Can Partially Limit the Early Spread of Virus after Cutaneous Inoculation. Journal of Immunology, 2004, 172, 392-397.	0.8	158
90	The production and purification of the human T-cell receptors, the CD3â^ŠÎ³ and CD3â^ŠÎ´ heterodimers: complex formation and crystallization with OKT3, a therapeutic monoclonal antibody. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1425-1428.	2.5	4

#	Article	IF	CITATIONS
91	Virus infection expands a biased subset of T cells that bind tetrameric class I peptide complexes. European Journal of Immunology, 2003, 33, 1557-1567.	2.9	17
92	A Naturally Selected Dimorphism within the HLA-B44 Supertype Alters Class I Structure, Peptide Repertoire, and T Cell Recognition. Journal of Experimental Medicine, 2003, 198, 679-691.	8.5	192
93	Progression of Armed CTL from Draining Lymph Node to Spleen Shortly After Localized Infection with Herpes Simplex Virus 1. Journal of Immunology, 2002, 168, 834-838.	0.8	214
94	Prime–boost immunization generates a high frequency, high-avidity CD8+ cytotoxic T lymphocyte population. International Immunology, 2002, 14, 31-37.	4.0	122
95	Conformational Plasticity Revealed by the Cocrystal Structure of NKG2D and Its Class I MHC-like Ligand ULBP3. Immunity, 2001, 15, 1039-1049.	14.3	139
96	Structure of killer cell immunoglobulin-like receptors and their recognition of the class I MHC molecules. Immunological Reviews, 2001, 181, 66-78.	6.0	92
97	Crystal structure of an NK cell immunoglobulin-like receptor in complex with its class I MHC ligand. Nature, 2000, 405, 537-543.	27.8	386
98	Aberrant Development of Thymocytes in Mice Lacking Laminin-2. Autoimmunity, 2000, 7, 179-193.	0.6	36
99	Herpes Simplex Virus Type 1-Specific Cytotoxic T-Lymphocyte Arming Occurs within Lymph Nodes Draining the Site of Cutaneous Infection. Journal of Virology, 2000, 74, 2414-2419.	3.4	37
100	Recognition of Human Histocompatibility Leukocyte Antigen (HLA)-E Complexed with HLA Class I Signal Sequence–derived Peptides by CD94/NKG2 Confers Protection from Natural Killer Cell–mediated Lysis. Journal of Experimental Medicine, 1998, 187, 813-818.	8.5	639