Esther S Levenson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4351751/publications.pdf

Version: 2024-02-01

all docs

46 554 12 21 g-index

46 46 46 46 282

times ranked

citing authors

docs citations

#	Article	IF	CITATIONS
1	Intuitive nonexamples: the case of triangles. Educational Studies in Mathematics, 2008, 69, 81-95.	2.8	77
2	Multiple solution methods and multiple outcomesâ€"is it a task for kindergarten children?. Educational Studies in Mathematics, 2010, 73, 217-231.	2.8	40
3	Early-years teachers' concept images and concept definitions: triangles, circles, and cylinders. ZDM - International Journal on Mathematics Education, 2015, 47, 497-509.	2.2	40
4	From preschool teachers' professional development to children's knowledge: comparing sets. Journal of Mathematics Teacher Education, 2011, 14, 113-131.	1.8	39
5	Exploring Collective Mathematical Creativity in Elementary School. Journal of Creative Behavior, 2011, 45, 215-234.	2.9	38
6	Tasks that may occasion mathematical creativity: teachers' choices. Journal of Mathematics Teacher Education, 2013, 16, 269-291.	1.8	36
7	Students' perceived sociomathematical norms: The missing paradigm. Journal of Mathematical Behavior, 2009, 28, 171-187.	0.9	23
8	Teachers' knowledge of the nature of definitions: The case of the zero exponent. Journal of Mathematical Behavior, 2012, 31, 209-219.	0.9	22
9	Exploring Avaâ \in ^M s developing sense for tasks that may occasion mathematical creativity. Journal of Mathematics Teacher Education, 2015, 18, 1-25.	1.8	17
10	Evaluating the potential of tasks to occasion mathematical creativity: definitions and measurements. Research in Mathematics Education, 2018, 20, 273-294.	1.2	16
11	Mathematically and practically-based explanations: individual preferences and sociomathematical norms. International Journal of Science and Mathematics Education, 2006, 4, 319-344.	2.5	15
12	Exploring young children's self-efficacy beliefs related to mathematical and nonmathematical tasks performed in kindergarten: abused and neglected children and their peers. Educational Studies in Mathematics, 2013, 83, 309-322.	2.8	15
13	Developing preschool teachers' knowledge of students' number conceptions. Journal of Mathematics Teacher Education, 2014, 17, 61-83.	1.8	12
14	Neither even nor odd: Sixth grade students' dilemmas regarding the parity of zero. Journal of Mathematical Behavior, 2007, 26, 83-95.	0.9	11
15	Mathematically based and practically based explanations in the elementary school: teachers' preferences. Journal of Mathematics Teacher Education, 2010, 13, 345-369.	1.8	11
16	Windows to early childhood mathematics teacher education. Journal of Mathematics Teacher Education, 2011, 14, 89-92.	1.8	11
17	VERBAL JUSTIFICATIONâ€"IS IT A PROOF? SECONDARY SCHOOL TEACHERS' PERCEPTIONS. International Journal of Science and Mathematics Education, 2010, 8, 1071-1090.	2.5	10
18	Secondary teachers' knowledge of elementary number theory proofs: the case of general-cover proofs. Journal of Mathematics Teacher Education, 2011, 14, 465-481.	1.8	10

#	Article	IF	CITATIONS
19	Fundamental issues concerning the sustainment and scaling up of professional development programs. ZDM - International Journal on Mathematics Education, 2015, 47, 153-159.	2.2	10
20	Individual and group mathematical creativity among post–high school students. Educational Studies in Mathematics, 2020, 104, 201-220.	2.8	10
21	Using video as a tool for promoting inquiry among preschool teachers and didacticians of mathematics. ZDM - International Journal on Mathematics Education, 2014, 46, 253-266.	2.2	7
22	Analyzing number composition and decomposition activities in kindergarten from a numeracy perspective. ZDM - International Journal on Mathematics Education, 2015, 47, 639-651.	2.2	7
23	Setting the table with toddlers: a playful context for engaging in one-to-one correspondence. ZDM - International Journal on Mathematics Education, 2020, 52, 717-728.	2.2	7
24	Exploring the relationship between teachers' values and their choice of tasks: the case of occasioning mathematical creativity. Educational Studies in Mathematics, 2022, 109, 469-489.	2.8	7
25	INSIGHTS FROM A TEACHER PROFESSIONAL DEVELOPMENT COURSE: RONA'S CHANGING PERSPECTIVES REGARDING MATHEMATICALLY-TALENTED STUDENTS. International Journal of Science and Mathematics Education, 2013, 11, 1087-1114.	2.5	6
26	Using theories and research to analyze a case: learning about example use. Journal of Mathematics Teacher Education, 2019, 22, 205-225.	1.8	6
27	Investigating Mathematical Creativity in Elementary School through the Lens of Complexity Theory. , 2014, , 35-51.		6
28	Fifth-grade students' use and preferences for mathematically and practically based explanations. Educational Studies in Mathematics, 2010, 73, 121-142.	2.8	5
29	Prospective and In-Service Mathematics Teachers' Attention to a Rich Mathematics Task While Planning its Implementation in the Classroom. International Journal of Science and Mathematics Education, 2020, , 1.	2.5	5
30	Employing the CAMTE Framework: Focusing on Preschool Teachers' Knowledge and Self-efficacy Related to Students' Conceptions. , 2014, , 291-306.		5
31	Repeating patterns in kindergarten: findings from children's enactments of two activities. Educational Studies in Mathematics, 2017, 96, 83-99.	2.8	4
32	Using Theories to Build Kindergarten Teachers' Mathematical Knowledge for Teaching. , 2011, , 231-250.		4
33	Engaging Young Children with Mathematical Activities Involving Different Representations: Triangles, Patterns, and Counting Objects. Center for Educational Policy Studies Journal, 2018, 8, 9.	0.3	4
34	Exploring one student's explanations at different ages: the case of Sharon. Educational Studies in Mathematics, 2013, 83, 181-203.	2.8	3
35	Preschool teachers' knowledge of repeating patterns: focusing on structure and the unit of repeat. Journal of Mathematics Teacher Education, 2019, 22, 305-325.	1.8	3
36	Analyzing collective mathematical creativity among post high-school students working in small groups. ZDM - International Journal on Mathematics Education, 2022, 54, 193.	2,2	3

#	Article	IF	CITATIONS
37	An organizer of mathematical statements for teachers: the six-cell matrix. International Journal of Mathematical Education in Science and Technology, 2012, 43, 765-777.	1.4	2
38	Preschool Teachers' Knowledge and Self-Efficacy Needed for Teaching Geometry: Are They Related?. Advances in Mathematics Education, 2015, , 319-337.	0.2	2
39	The Camte Framework., 2013,, 89-109.		2
40	Engaging children with ABA patterns on a computer tablet: filling in the blanks. Research in Mathematics Education, 2018, 20, 110-126.	1.2	1
41	Exploring adults' awareness of and suggestions for early childhood numerical activities. Educational Studies in Mathematics, 2022, 109, 5-21.	2.8	1
42	Engaging a third-grade student with autism spectrum disorder in an error finding activity. Journal of Mathematical Behavior, 2021, 63, 100896.	0.9	1
43	Developing a Mathematically Rich Environment for 3-Year-Old Children: The Case of Geometry. , 2016, , 325-340.		0
44	Mathematics Teacher Education for Secondary Schools: Bridging Between University Courses and Field Work. Series on Mathematical Education, 2018, , 243-250.	0.0	0
45	Professional Development for Preschool Teachers: The CAMTE Framework and Repeating Patterns. Series on Mathematical Education, 2018, , 107-115.	0.0	0
46	Adults' awareness of numerical ideas raised by young children. Research in Mathematics Education, 0, , 1-19.	1.2	0