Mirela B Dias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4351417/publications.pdf Version: 2024-02-01

MIDELA R DIAS

#	Article	IF	CITATIONS
1	Adenosine in the lateral hypothalamus/perifornical area does not participate on the CO2 chemoreflex. Respiratory Physiology and Neurobiology, 2020, 276, 103368.	1.6	1
2	Glutamate metabotropic receptors in the lateral hypothalamus/perifornical area reduce the CO2 chemoreflex. Respiratory Physiology and Neurobiology, 2019, 260, 122-130.	1.6	5
3	ATP in the lateral hypothalamus/perifornical area enhances the CO ₂ chemoreflex control of breathing. Experimental Physiology, 2018, 103, 1679-1691.	2.0	4
4	Orexinergic system in the locus coeruleus modulates the CO2 ventilatory response. Pflugers Archiv European Journal of Physiology, 2016, 468, 763-774.	2.8	15
5	Orexin in the toad Rhinella schneideri: The location of orexinergic neurons and the role of orexin in ventilatory responses to hypercarbia and hypoxia. Respiratory Physiology and Neurobiology, 2016, 224, 90-99.	1.6	9
6	Hypoxic and hypercapnic ventilatory responses in rats with polycystic ovaries. Respiratory Physiology and Neurobiology, 2015, 217, 17-24.	1.6	6
7	lonotropic but not metabotropic glutamatergic receptors in the locus coeruleus modulate the hypercapnic ventilatory response in unanaesthetized rats. Acta Physiologica, 2013, 208, 125-135.	3.8	13
8	Contribution of the retrotrapezoid nucleus/parafacial respiratory region to the expiratory-sympathetic coupling in response to peripheral chemoreflex in rats. Journal of Neurophysiology, 2012, 108, 882-890.	1.8	49
9	Purinergic transmission in the rostral but not caudal medullary raphe contributes to the hypercapnia-induced ventilatory response in unanesthetized rats. Respiratory Physiology and Neurobiology, 2012, 184, 41-47.	1.6	9
10	Opioid <i>μ</i> â€receptors in the rostral medullary raphe modulate hypoxiaâ€induced hyperpnea in unanesthetized rats. Acta Physiologica, 2012, 204, 435-442.	3.8	11
11	lonotropic glutamatergic receptors in the rostral medullary raphe modulate hypoxia and hypercapnia-induced hyperpnea. Respiratory Physiology and Neurobiology, 2011, 175, 104-111.	1.6	6
12	Serotonergic neurons in the nucleus raphe obscurus contribute to interaction between central and peripheral ventilatory responses to hypercapnia. Pflugers Archiv European Journal of Physiology, 2011, 462, 407-418.	2.8	42
13	The orexin receptor 1 (OX1R) in the rostral medullary raphe contributes to the hypercapnic chemoreflex in wakefulness, during the active period of the diurnal cycle. Respiratory Physiology and Neurobiology, 2010, 170, 96-102.	1.6	54
14	Antagonism of orexin receptorâ€1 in the retrotrapezoid nucleus inhibits the ventilatory response to hypercapnia predominantly in wakefulness. Journal of Physiology, 2009, 587, 2059-2067.	2.9	81
15	Focal CO ₂ dialysis in raphe obscurus does not stimulate ventilation but enhances the response to focal CO ₂ dialysis in the retrotrapezoid nucleus. Journal of Applied Physiology, 2008, 105, 83-90.	2.5	53
16	Involvement of the Nucleus Raphe Obscurus (ROb) on CO2 ventilatory response. FASEB Journal, 2008, 22, 169-169.	0.5	0
17	Raphe magnus nucleus is involved in ventilatory but not hypothermic response to CO ₂ . Journal of Applied Physiology, 2007, 103, 1780-1788.	2.5	56
18	Central heme oxygenase–carbon monoxide pathway participates in the lipopolysaccharide-induced tolerance in rats. Brain Research, 2006, 1111, 83-89.	2.2	8

#	Article	IF	CITATIONS
19	Role of nitric oxide in tolerance to lipopolysaccharide in mice. Journal of Applied Physiology, 2005, 98, 1322-1327.	2.5	29