Rüdiger Berger ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/4351300/publications.pdf Version: 2024-02-01 | | | 147786 | 133244 | |----------|----------------|--------------|----------------| | 85 | 3,725 | 31 | 59 | | papers | citations | h-index | g-index | | | | | | | | | | | | | | | 5007 | | 93 | 93 | 93 | 5397 | | all docs | docs citations | times ranked | citing authors | | | | | | | # | Article | IF | Citations | |----|--|------|-----------| | 1 | Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nature Communications, 2014, 5, 5001. | 12.8 | 294 | | 2 | How the formation of interfacial charge causes hysteresis in perovskite solar cells. Energy and Environmental Science, 2018, 11, 2404-2413. | 30.8 | 289 | | 3 | When and how self-cleaning of superhydrophobic surfaces works. Science Advances, 2020, 6, eaaw9727. | 10.3 | 242 | | 4 | How drops start sliding over solid surfaces. Nature Physics, 2018, 14, 191-196. | 16.7 | 240 | | 5 | Yttrium-substituted nanocrystalline TiO ₂ photoanodes for perovskite based heterojunction solar cells. Nanoscale, 2014, 6, 1508-1514. | 5.6 | 162 | | 6 | DNA-Templated Synthesis in Three Dimensions: Introducing a Micellar Scaffold for Organic Reactions. Angewandte Chemie - International Edition, 2006, 45, 4206-4210. | 13.8 | 161 | | 7 | Engineering the Structural Properties of DNA Block Copolymer Micelles by Molecular Recognition. Angewandte Chemie - International Edition, 2007, 46, 1172-1175. | 13.8 | 151 | | 8 | Local Time-Dependent Charging in a Perovskite Solar Cell. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19402-19409. | 8.0 | 109 | | 9 | Contact angle hysteresis. Current Opinion in Colloid and Interface Science, 2022, 59, 101574. | 7.4 | 81 | | 10 | Genetically encoded lipid–polypeptide hybrid biomaterials that exhibit temperature-triggered hierarchical self-assembly. Nature Chemistry, 2018, 10, 496-505. | 13.6 | 79 | | 11 | Electrical Modes in Scanning Probe Microscopy. Macromolecular Rapid Communications, 2009, 30, 1167-1178. | 3.9 | 77 | | 12 | Enzymatic Control of the Size of DNA Block Copolymer Nanoparticles. Angewandte Chemie - International Edition, 2008, 47, 974-976. | 13.8 | 76 | | 13 | Synthesis and Characterization of Polymer Brushes on Micromechanical Cantilevers. Macromolecular Chemistry and Physics, 2004, 205, 1713-1720. | 2.2 | 75 | | 14 | Glucose-responsive polymer brushes for microcantilever sensing. Journal of Materials Chemistry, 2010, 20, 3391. | 6.7 | 74 | | 15 | Micromechanics senses biomolecules. Materials Today, 2002, 5, 22-29. | 14.2 | 68 | | 16 | Adaptive Wetting—Adaptation in Wetting. Langmuir, 2018, 34, 11292-11304. | 3.5 | 66 | | 17 | Spontaneous charging affects the motion of sliding drops. Nature Physics, 2022, 18, 713-719. | 16.7 | 62 | | 18 | Reliable Work Function Determination of Multicomponent Surfaces and Interfaces: The Role of Electrostatic Potentials in Ultraviolet Photoelectron Spectroscopy. Advanced Materials Interfaces, 2017, 4, 1700324. | 3.7 | 61 | | # | Article | IF | CITATIONS | |----|---|------|-----------| | 19 | Micromechanical Cantilever Technique: A Tool for Investigating the Swelling of Polymer Brushes. Langmuir, 2007, 23, 2203-2207. | 3.5 | 57 | | 20 | Energy Dissipation of Moving Drops on Superhydrophobic and Superoleophobic Surfaces. Langmuir, 2017, 33, 107-116. | 3.5 | 57 | | 21 | Removal of Surface Oxygen Vacancies Increases Conductance Through TiO ₂ Thin Films for Perovskite Solar Cells. Journal of Physical Chemistry C, 2019, 123, 13458-13466. | 3.1 | 54 | | 22 | Adaptive Wetting of Polydimethylsiloxane. Langmuir, 2020, 36, 7236-7245. | 3.5 | 50 | | 23 | Swelling signals of polymer films measured by a combination of micromechanical cantilever sensor and surface plasmon resonance spectroscopy. Sensors and Actuators B: Chemical, 2006, 117, 43-49. | 7.8 | 48 | | 24 | Electrical characterization of organic solar cell materials based on scanning force microscopy. European Polymer Journal, 2013, 49, 1907-1915. | 5.4 | 46 | | 25 | Phenothiazine-functionalized redox polymers for a new cathode-active material. RSC Advances, 2015, 5, 22947-22950. | 3.6 | 42 | | 26 | Atomic Force Spectroscopy of Thermoresponsive Photo-Cross-Linked Hydrogel Films. Langmuir, 2010, 26, 7262-7269. | 3.5 | 40 | | 27 | Engineering Proteins at Interfaces: From Complementary Characterization to Material Surfaces with Designed Functions. Angewandte Chemie - International Edition, 2018, 57, 12626-12648. | 13.8 | 40 | | 28 | Kelvin Probe Force Microscopy in Nonpolar Liquids. Langmuir, 2012, 28, 13892-13899. | 3.5 | 35 | | 29 | Photoinduced Degradation Studies of Organic Solar Cell Materials Using Kelvin Probe Force and Conductive Scanning Force Microscopy. Journal of Physical Chemistry C, 2011, 115, 19994-20001. | 3.1 | 33 | | 30 | Nanopatterns of polymer brushes for understanding protein adsorption on the nanoscale. RSC Advances, 2014, 4, 45059-45064. | 3.6 | 32 | | 31 | Electronic effects of nano-confinement in functional organic and inorganic materials for optoelectronics. Chemical Society Reviews, 2021, 50, 3585-3628. | 38.1 | 32 | | 32 | Generation of Multiblock Copolymers by PCR: Synthesis, Visualization and Nanomechanical Properties. Nano Letters, 2009, 9, 3658-3662. | 9.1 | 30 | | 33 | Light Induced Charging of Polymer Functionalized Nanorods. Nano Letters, 2010, 10, 2812-2816. | 9.1 | 29 | | 34 | Response Characteristics of Thermoresponsive Polymers Using Nanomechanical Cantilever Sensors. Macromolecular Chemistry and Physics, 2009, 210, 1339-1345. | 2.2 | 28 | | 35 | Effect of the Molecular Structure on the Hierarchical Self-Assembly of Semifluorinated Alkanes at the Air/Water Interface. Langmuir, 2011, 27, 8776-8786. | 3.5 | 28 | | 36 | Nanoscale heterogeniety and workfunction variations in ZnO thin films. Applied Surface Science, 2016, 363, 516-521. | 6.1 | 27 | | # | Article | IF | Citations | |----|--|------|-----------| | 37 | On the micromechanics of micro-cantilever sensors: Property analysis and eigenstrain modeling. Sensors and Actuators A: Physical, 2007, 139, 70-77. | 4.1 | 26 | | 38 | Control of surface properties of self-assembled monolayers by tuning the degree of molecular asymmetry. Surface Science, 2006, 600, 2847-2856. | 1.9 | 25 | | 39 | Mapping of Local Conductivity Variations on Fragile Nanopillar Arrays by Scanning Conductive Torsion Mode Microscopy. Nano Letters, 2010, 10, 1194-1197. | 9.1 | 25 | | 40 | In-Situ Visualization of the Enzymatic Growth of Surface-Immobilized DNA Block Copolymer Micelles by Scanning Force Microscopy. Macromolecules, 2008, 41, 2914-2919. | 4.8 | 24 | | 41 | Premelting-Induced Agglomeration of Hydrates: Theoretical Analysis and Modeling. ACS Applied Materials & Description (1988) (198 | 8.0 | 24 | | 42 | Surface Stress, Thickness, and Mass of the First Few Layers of Polyelectrolyte. Langmuir, 2008, 24, 3191-3198. | 3.5 | 23 | | 43 | Template-Based Preparation of Free-Standing Semiconducting Polymeric Nanorod Arrays on Conductive Substrates. ACS Applied Materials & Interfaces, 2010, 2, 1573-1580. | 8.0 | 23 | | 44 | Enhanced Vertical Charge Transport of Homo―and Blended Semiconducting Polymers by Nanoconfinement. Advanced Materials, 2020, 32, 1908087. | 21.0 | 22 | | 45 | Polymer patchy colloids with sticky patches. Polymer Chemistry, 2014, 5, 365-371. | 3.9 | 21 | | 46 | Stress–Structure Correlation in PS–PMMA Mixed Polymer Brushes. Macromolecules, 2012, 45, 3129-3136. | 4.8 | 19 | | 47 | Surface Premelting and Interfacial Interactions of Semi-Clathrate Hydrate. Journal of Physical Chemistry C, 2019, 123, 24080-24086. | 3.1 | 19 | | 48 | Invisible high workfunction materials on heterogeneous surfaces. Applied Surface Science, 2015, 327, 22-26. | 6.1 | 18 | | 49 | Clathrate Adhesion Induced by Quasi-Liquid Layer. Journal of Physical Chemistry C, 2021, 125, 21293-21300. | 3.1 | 18 | | 50 | Surface polymerization of (3,4-ethylenedioxythiophene) probed by in situ scanning tunneling microscopy on Au(111) in ionic liquids. Nanoscale, 2011, 3, 251-257. | 5.6 | 17 | | 51 | Scanning force microscopy as a tool to investigate the properties of polyglycerol ester foams. Journal of Colloid and Interface Science, 2012, 374, 164-175. | 9.4 | 17 | | 52 | Readout of micromechanical cantilever sensor arrays by Fabry-Perot interferometry. Review of Scientific Instruments, 2007, 78, 104105. | 1.3 | 16 | | 53 | Determination of Cross-Link Density in Ion-Irradiated Polystyrene Surfaces from Rippling. Langmuir, 2009, 25, 3108-3114. | 3.5 | 14 | | 54 | Thermal Response of Surface Grafted Two-Dimensional Polystyrene (PS)/Polyvinylmethylether (PVME) Blend Films. Macromolecules, 2010, 43, 1108-1116. | 4.8 | 14 | | # | Article | IF | Citations | |----|---|-----|-----------| | 55 | Reactions of Plasma-Polymerised Pentafluorophenyl Methacrylate with Simple Amines. Plasma Processes and Polymers, 2010, 7, 915-925. | 3.0 | 13 | | 56 | Frequency Response of Polymer Films Made from a Precursor Colloidal Monolayer on a Nanomechanical Cantilever. Macromolecules, 2012, 45, 862-871. | 4.8 | 12 | | 57 | Photoinduced Charge Separation of Selfâ€Organized Semiconducting Superstructures Composed of a Functional Polymer–TiO ₂ Hybrid. Macromolecular Chemistry and Physics, 2013, 214, 975-984. | 2.2 | 12 | | 58 | Adaptation of a Styrene–Acrylic Acid Copolymer Surface to Water. Langmuir, 2021, 37, 1571-1577. | 3.5 | 12 | | 59 | Stable Lignin-Rich Nanofibers for Binder-Free Carbon Electrodes in Supercapacitors. ACS Applied Nano Materials, 2021, 4, 13099-13111. | 5.0 | 12 | | 60 | Controlled Mutual Diffusion between Fullerene and Conjugated Polymer Nanopillars in Ordered Heterojunction Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600264. | 3.7 | 11 | | 61 | Stability of a Split Streptomycin Binding Aptamer. Journal of Physical Chemistry B, 2016, 120, 6479-6489. | 2.6 | 11 | | 62 | "Liquid-like―Water in Clathrates Induced by Host–Guest Hydrogen Bonding. Journal of Physical Chemistry C, 2021, 125, 15751-15757. | 3.1 | 11 | | 63 | Electrical field assisted growth of poly(3-hexylthiophene) layers employing ionic liquids: microstructure elucidated by scanning force and electron microscopy. Journal of Materials Chemistry, 2010, 20, 5325. | 6.7 | 10 | | 64 | Investigating morphology and electronic properties of self-assembled hybrid systems for solar cells. Journal of Materials Chemistry, 2011, 21, 7765. | 6.7 | 10 | | 65 | Surface morphologies in polymers by irradiation with argon ions and consecutive swelling.
Microelectronic Engineering, 2006, 83, 819-822. | 2.4 | 9 | | 66 | Surface stress control using ultraviolet light irradiation of plasma-polymerized thin films. Applied Physics Letters, 2006, 88, 143119. | 3.3 | 9 | | 67 | Investigation into the Chemical Reactivity of Plasma-Deposited Perfluorophenyl Methacrylate Using Infrared Reflection Absorption Spectroscopy and Microcantilever Studies. Plasma Processes and Polymers, 2007, 4, S790-S793. | 3.0 | 9 | | 68 | Hygroscopic properties of NaCl nanoparticles on the surface: a scanning force microscopy study. Physical Chemistry Chemical Physics, 2020, 22, 9967-9973. | 2.8 | 8 | | 69 | Electrical tip-sample contact in scanning conductive torsion mode. Applied Physics Letters, 2013, 102, 163105. | 3.3 | 6 | | 70 | Thermal Characterization of Dynamic Silicon Cantilever Array Sensors by Digital Holographic Microscopy. Sensors, 2017, 17, 1191. | 3.8 | 6 | | 71 | Shuffling gait motion of an aerodynamically driven wall-bound drop. Physical Review Fluids, 2020, 5, . | 2.5 | 6 | | 72 | Oriented nanometer surface morphologies by thermal relaxation of locally cross-linked and stretched polymer samples. Microelectronic Engineering, 2007, 84, 797-801. | 2.4 | 5 | | # | Article | IF | Citations | |----|--|-----|-----------| | 73 | Vitamin C Loaded Polyethylene: Synthesis and Properties of Precise Polyethylene with Vitamin C Defects via Acyclic Diene Metathesis Polycondensation. Macromolecules, 2020, 53, 2932-2941. | 4.8 | 5 | | 74 | Properties of amphiphilic oligonucleotide films at the air/water interface and after film transfer. Colloids and Surfaces B: Biointerfaces, 2013, 111, 439-445. | 5.0 | 4 | | 75 | Pinning forces of sliding drops at defects. Europhysics Letters, 2022, 139, 47001. | 2.0 | 4 | | 76 | Electrodeposition of ZnO nanorods on opaline replica as hierarchically structured systems. Journal of Materials Chemistry, 2011, 21, 1079-1085. | 6.7 | 3 | | 77 | Electrical Characterization of Solar Cell Materials Using Scanning Probe Microscopy. Nanoscience and Technology, 2012, , 551-573. | 1.5 | 3 | | 78 | Temperature dependence of surface reorganization characteristics of amphiphilic block copolymer in air and in water studied by scanning force microscopy. Journal of Plastic Film and Sheeting, 2015, 31, 434-448. | 2.2 | 3 | | 79 | Engineering von Proteinen an OberflÄchen: Von komplementÄrer Charakterisierung zu
MaterialoberflÄchen mit maÄŸgeschneiderten Funktionen. Angewandte Chemie, 2018, 130, 12806-12830. | 2.0 | 3 | | 80 | Scanning probe microscopy for energy-related materials. Beilstein Journal of Nanotechnology, 2019, 10, 132-134. | 2.8 | 3 | | 81 | Acidic pH Promotes Refolding and Macroscopic Assembly of Amyloid β (16–22) Peptides at the Air–Water Interface. Journal of Physical Chemistry Letters, 2022, 13, 6674-6679. | 4.6 | 3 | | 82 | Two-Stage Collapse of PNIPAM Brushes: Viscoelastic Changes Revealed by an Interferometric Laser Technique. Langmuir, 2019, 35, 15776-15783. | 3.5 | 2 | | 83 | Adaptation and Recovery of a Styreneâ€Acrylic Acid Copolymer Surface to Water. Macromolecular Rapid Communications, 2022, , 2100733. | 3.9 | 2 | | 84 | Thermal properties of nanocapsules measured by scanning force microscopy methods. Microelectronic Engineering, 2012, 97, 223-226. | 2.4 | 1 | | 85 | Simplifying cantilever sensors: Segmental analysis, a way to multiply your output. Sensors and Actuators B: Chemical, 2013, 177, 1142-1148. | 7.8 | O |