Selim Kermasha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4351002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laccase-catalyzed oxidative cross-linking of tyrosine and potato patatin- and lysozyme-derived peptides: Molecular and kinetic study. Enzyme and Microbial Technology, 2021, 143, 109694.	3.2	5
2	Selected industrial enzymes. , 2021, , 259-305.		1
3	Immobilization of enzymes and their use in biotechnological applications. , 2021, , 133-170.		2
4	Biocatalysis of enzymes in nonconventional media. , 2021, , 171-201.		0
5	Screening trials for the encapsulation of laccase enzymatic extract in silica sol-gel. Journal of Sol-Gel Science and Technology, 2018, 85, 657-663.	2.4	9
6	Microencapsulation of esterified krill oil, using complex coacervation. Journal of Microencapsulation, 2018, 35, 36-48.	2.8	11
7	Lyoprotection and stabilization of laccase extract from Coriolus hirsutus, using selected additives. AMB Express, 2018, 8, 152.	3.0	5
8	Selected dehydrogenases in Yarrowia lipolytica JMY 861: their role in the synthesis of flavor compounds. Bioscience, Biotechnology and Biochemistry, 2016, 80, 2184-2191.	1.3	3
9	Optimization of the Hydrolysis of Safflower Oil for the Production of Linoleic Acid, Used as Flavor Precursor. International Journal of Food Science, 2015, 2015, 1-10.	2.0	17
10	Microencapsulation of krill oil using complex coacervation. Journal of Microencapsulation, 2014, 31, 774-784.	2.8	28
11	Synthesis of Linoleic Acid Hydroperoxides as Flavor Precursors, Using Selected Substrate Sources. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1867-1876.	1.9	7
12	Assessment of the Antioxidant Capacity and Oxidative Stability of Esterified Phenolic Lipids in Selected Edible Oils. Journal of Food Science, 2014, 79, H730-7.	3.1	5
13	Optimization of Lipaseâ€Catalyzed Interesterification of Flaxseed Oil and Tricaprylin Using Response Surface Methodology. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 395-403.	1.9	10
14	Modeling lipase-catalyzed interesterification of flaxseed oil and tricaprylin for the synthesis of structured lipids. Journal of Molecular Catalysis B: Enzymatic, 2014, 102, 33-40.	1.8	21
15	Lipase atalyzed Synthesis of Medium‣ongâ€Medium Type Structured Lipids Using Tricaprylin and Trilinolenin as Substrate Models. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 377-389.	1.9	10
16	Lipase-catalyzed synthesis and characterization of flaxseed oil-based structured lipids. Journal of Functional Foods, 2013, 5, 424-433.	3.4	25
17	Biocatalysis with hydroperoxide lyase in extracts from <i>Penicillium camemberti</i> in neat organic solvent media. Biocatalysis and Biotransformation, 2013, 31, 94-99.	2.0	6
18	Lipase-catalyzed synthesis of structured phenolic lipids in solvent-free system using flaxseed oil and selected phenolic acids as substrates. Journal of Biotechnology, 2012, 158, 128-136.	3.8	29

#	Article	IF	CITATIONS
19	Enzymatic synthesis of phenolic lipids in solvent-free medium using flaxseed oil and 3,4-dihydroxyphenyl acetic acid. Process Biochemistry, 2012, 47, 1813-1819.	3.7	20
20	Lipase-catalyzed transesterification of krill oil and 3,4-dihydroxyphenyl acetic acid in solvent-free medium using response surface methodology. Journal of Molecular Catalysis B: Enzymatic, 2012, 84, 189-197.	1.8	11
21	Chromatographic Separation of Synthesized Phenolic Lipids from Krill Oil and Dihydroxyphenyl Acetic Acid. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 597-608.	1.9	4
22	Activation and Stabilization of The Hydroperoxide Lyase Enzymatic Extract from Mint Leaves (Mentha) Tj ETQq0	0 0 rgBT 2.9	/Ovgrlock 10 ⁻
23	Laccase-catalyzed oxidation of phenolic compounds in organic media. Journal of Molecular Catalysis B: Enzymatic, 2009, 57, 89-95.	1.8	34
24	Lipase-catalyzed acidolysis of fish liver oil with dihydroxyphenylacetic acid in organic solvent media. Process Biochemistry, 2009, 44, 1193-1199.	3.7	27
25	Stabilization of an enzymatic extract from Penicillium camemberti containing lipoxygenase and hydroperoxide lyase activities. Process Biochemistry, 2008, 43, 258-264.	3.7	14
26	Enzymatic synthesis of structured phenolic lipids by acidolysis of flaxseed oil with selected phenolic acids. Journal of Molecular Catalysis B: Enzymatic, 2008, 52-53, 96-105.	1.8	43
27	Immobilization of an enzymatic extract from Penicillium camemberti containing lipoxygenase and hydroperoxide lyase activities. Journal of Molecular Catalysis B: Enzymatic, 2008, 52-53, 88-95.	1.8	9
28	Secondary structure conformation of hydroperoxide lyase from green bell pepper, cloned in Yarrowia lipolytica, and its activity in selected media. Journal of Molecular Catalysis B: Enzymatic, 2008, 52-53, 128-132.	1.8	11
29	Nanoporous Sol-Gel Supports Enzymatic Hydrolysis of Chlorophyll in Organic Media. ACS Symposium Series, 2008, , 199-213.	0.5	5
30	Lipase-catalyzed synthesis of phenolic lipids from fish liver oil and dihydrocaffeic acid. Biocatalysis and Biotransformation, 2007, 25, 211-218.	2.0	39
31	Controlling sol-gel properties enhancing entrapped membrane protein activity through doping additives. Journal of Sol-Gel Science and Technology, 2007, 43, 161-170.	2.4	13
32	Optimization of Chlorophyllase-catalyzed Hydrolysis of Chlorophyll in Monophasic Organic Solvent Media. Applied Biochemistry and Biotechnology, 2007, 142, 263-275.	2.9	9
33	Lipase-catalyzed transesterification of dihydrocaffeic acid with flaxseed oil for the synthesis of phenolic lipids. Journal of Biotechnology, 2006, 127, 167-176.	3.8	60
34	Fourier Transform Infrared Study of Lipoxygenase Conformation in Organic Solvent Media. Applied Spectroscopy, 2006, 60, 168-173.	2.2	0
35	Optimization of tetramethoxysilane-derived sol gel entrapment protocol stabilizes highly active chlorophyllase. Journal of Sol-Gel Science and Technology, 2006, 38, 251-259.	2.4	5
36	Lipase-catalyzed transesterification of trilinolein or trilinolenin with selected phenolic acids. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 101-107.	1.9	58

SELIM KERMASHA

#	Article	IF	CITATIONS
37	Enzymatic synthesis of structured phenolic lipids by incorporation of selected phenolic acids into triolein. Biocatalysis and Biotransformation, 2006, 24, 272-279.	2.0	39
38	Lipase-Catalyzed Esterification of Selected Phenolic Acids With Linolenyl Alcohols in Organic Solvent Media. Applied Biochemistry and Biotechnology, 2005, 127, 017-028.	2.9	36
39	Stability of Immobilized Soybean Lipoxygenase in Selected Organic Solvent Media. Applied Biochemistry and Biotechnology, 2005, 127, 029-042.	2.9	14
40	Production of flavour precursors byPenicilliumcandidum using selected polyunsaturated fatty acids. Flavour and Fragrance Journal, 2005, 20, 690-702.	2.6	2
41	Lipase-catalyzed esterification of cinnamic acid and oleyl alcohol in organic solvent media. Journal of Chemical Technology and Biotechnology, 2005, 80, 462-468.	3.2	72
42	Matrix physicochemical properties affect activity of entrapped chlorophyllase. Journal of Chemical Technology and Biotechnology, 2005, 80, 1395-1402.	3.2	7
43	Optimization of enzymatic assay for the measurement of lipoxygenase activity in organic solvent media. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 817-823.	1.9	6
44	Lipase-catalyzed biosynthesis of cinnamoylated lipids in a selected organic solvent medium. Journal of Biotechnology, 2005, 119, 281-290.	3.8	40
45	Immobilization and biocatalysis of chlorophyllase in selected organic solvent systems. Journal of Biotechnology, 2005, 120, 273-283.	3.8	22
46	Enzymatic esterification of dihydrocaffeic acid with linoleyl alcohol in organic solvent media. Biocatalysis and Biotransformation, 2005, 23, 37-44.	2.0	26
47	Characterization of an enriched lipoxygenase extract from Aspergillus niger in terms of specificity and nature of flavor precursors production. Journal of Molecular Catalysis B: Enzymatic, 2004, 29, 201-209.	1.8	12
48	Chlorophyllase biocatalysis in an aqueous/miscible organic solvent medium containing canola oil. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 927-932.	1.9	5
49	Biocatalysis by immobilized lipoxygenase in a ternary micellar system. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 305-317.	1.8	22
50	Encapsulation of chlorophyllase in hydrophobically modified hydrogel. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 319-325.	1.8	14
51	Characterization of the biocatalysis of tyrosinase in selected organic solvent media using model phenolic substrates. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 335-345.	1.8	8
52	Production of flavor compounds by hydroperoxide lyase from enzymatic extracts of Penicillium sp Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 479-487.	1.8	23
53	Biocatalysis of lipoxygenase in selected organic solvent media. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 909-919.	1.8	22
54	Biocatalysis of tyrosinase using catechin as substrate in selected organic solvent media. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 929-938.	1.8	31

SELIM KERMASHA

#	Article	IF	CITATIONS
55	Biocatalysis of tyrosinase in chloroform medium, using selected phenolic substrates. Journal of Chemical Technology and Biotechnology, 2000, 75, 475-483.	3.2	12
56	Biocatalysis of silica gel-immobilized chlorophyllase in a ternary micellar system. Process Biochemistry, 2000, 35, 1103-1109.	3.7	9
57	Characterization of lipoxygenase extracts fromPenicillumsp JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 335-342.	1.9	33
58	Immobilization of Lipase fromRhizopus Niveus: A Way to Enhance its Synthetic Activity in Organic Solvent. Biocatalysis and Biotransformation, 1999, 16, 411-426.	2.0	8
59	Characterization of partially purified extracellular lipase fractions fromPseudomonas fragiCRDA 037. JAOCS, Journal of the American Oil Chemists' Society, 1999, 76, 1301.	1.9	1
60	Biogeneration of Short Chain Fatty Acid Esters byPseudomonas FragiCRDA 037. Biocatalysis and Biotransformation, 1999, 17, 269-282.	2.0	5
61	Biocatalysis of immobilized chlorophyllase in a ternary micellar system. Journal of Biotechnology, 1999, 75, 45-55.	3.8	16
62	Characterization of Hydroperoxides and Carbonyl Compounds Obtained by Lipoxygenase Extracts of Selected Microorganisms. Bioscience, Biotechnology and Biochemistry, 1997, 61, 1262-1269.	1.3	33
63	Biocatalysis of Chlorophyllase in Ternary Micellar Systems Using Pheophytins as Substrates. Journal of Chemical Technology and Biotechnology, 1997, 68, 315-323.	3.2	10
64	Biocatalysis of chlorophyllase in a ternary micellar system containing Span 85 using purified and oxidized pheophytins as substrates. Journal of Biotechnology, 1997, 55, 181-191.	3.8	6
65	Biocatalysis by tyrosinase in organic solvent media; a model system using catechin and vanillin as substrates. Journal of Molecular Catalysis B: Enzymatic, 1997, 2, 199-213.	1.8	21
66	Biocatalysis of chlorophyllase from Phaeodactylum tricornutm in micellar ternary system containing spans. Journal of Biotechnology, 1996, 45, 253-264.	3.8	15
67	Vitamin E inhibits fish oil-induced hyperlipidemia and tissue lipid peroxidation in hamsters. Lipids, 1996, 31, 839-847.	1.7	21
68	Biocatalysis of chlorophyllase from Phaeodactylum tricornutum in organic solvent media. Process Biochemistry, 1995, 30, 159-168.	3.7	5
69	Partial purified lipoxygenase from Fusarium oxysporum: characterization and kinetic studies. Process Biochemistry, 1995, 30, 261-268.	3.7	14
70	Interestification of Butterfat by Lipase fromRhizopus niveusin Reverse Micellar Systems. Bioscience, Biotechnology and Biochemistry, 1994, 58, 1553-1557.	1.3	15
71	Biocatalysis of chlorophyllase fromPhaeodactylum tricornutum in a biphasic organic system. Journal of Chemical Technology and Biotechnology, 1994, 60, 73-81.	3.2	15
72	Extraction, purification, and characterization of chlorophylls from spinach leaves. Journal of Agricultural and Food Chemistry, 1992, 40, 215-220.	5.2	49

SELIM KERMASHA

#	Article	IF	CITATIONS
73	Diastatic Activity of Forage Additive Products Containing Malt Flour. Journal of the Association of Official Analytical Chemists, 1990, 73, 213-215.	0.2	0
74	Partial purification and characterization of lipoxygenase of canola seed (Brassica napus var. Westar). Journal of Agricultural and Food Chemistry, 1990, 38, 2003-2008.	5.2	20
75	Changes in chemical composition of the kew cultivar of pineapple fruit during development. Journal of the Science of Food and Agriculture, 1987, 39, 317-324.	3.5	26
76	Changes in lipoxygenase and hydroperoxide isomerase activities during the development and storage of French bean seed. Journal of the Science of Food and Agriculture, 1987, 40, 1-10.	3.5	12
77	Changes in lipid components during the development of the french bean seed (Phaseolus vulgaris). Journal of the Science of Food and Agriculture, 1986, 37, 652-658.	3.5	4