Alain M Jonas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4350795/publications.pdf

Version: 2024-02-01

41258 51492 9,367 219 49 86 citations h-index g-index papers 226 226 226 9851 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromolecular Rapid Communications, 2000, 21, 319-348.	2.0	1,137
2	Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nature Materials, 2009, 8, 62-67.	13.3	498
3	Antibacterial and Antifouling Polymer Brushes Incorporating Antimicrobial Peptide. Bioconjugate Chemistry, 2009, 20, 71-77.	1.8	232
4	Glucose-Responsive Polyelectrolyte Capsules. Langmuir, 2006, 22, 5070-5074.	1.6	179
5	Thermo-Responsive Polymer Brushes with Tunable Collapse Temperatures in the Physiological Range. Macromolecules, 2007, 40, 4403-4405.	2.2	178
6	Influence of Polyelectrolyte Charge Density on the Formation of Multilayers of Strong Polyelectrolytes at Low Ionic Strength. Langmuir, 2002, 18, 1408-1412.	1.6	173
7	Nanoscale Control of Polymer Crystallization by Nanoimprint Lithography. Nano Letters, 2005, 5, 1738-1743.	4.5	142
8	Temperatureâ€Responsive Polymer Brushes Switching from Bactericidal to Cellâ€Repellent. Advanced Materials, 2010, 22, 5024-5028.	11.1	142
9	Binary Nanopatterned Surfaces Prepared from Silane Monolayers. Nano Letters, 2004, 4, 365-371.	4.5	137
10	Microwave-Assisted Cationic Ring-Opening Polymerization of 2-Oxazolines:Â A Powerful Method for the Synthesis of Amphiphilic Triblock Copolymers. Macromolecules, 2006, 39, 4719-4725.	2.2	131
11	Microstructure and thermo-responsive behavior of poly(N-isopropylacrylamide) brushes grafted in nanopores of track-etched membranes. Journal of Membrane Science, 2008, 308, 75-86.	4.1	129
12	Ordered Polyelectrolyte "Multilayers― 1. Mechanisms of Growth and Structure Formation:  A Comparison with Classical Fuzzy "Multilayers― Macromolecules, 2001, 34, 3318-3330.	2.2	121
13	Synchrotron X-ray Scattering Studies of Crystallization of Poly(ether-ether-ketone) from the Glass and Structural Changes during Subsequent Heating-Cooling Processes. Macromolecules, 1995, 28, 8491-8503.	2.2	118
14	Thermal stability and crystallization of poly(aryl ether ether ketone). Polymer, 1991, 32, 2691-2706.	1.8	117
15	Solvent-Induced Morphological Transition in Core-Cross-Linked Block Copolymer Micelles. Journal of the American Chemical Society, 2006, 128, 3784-3788.	6.6	117
16	Relation between PEEK semicrystalline morphology and its subglass relaxations and glass transition. Macromolecules, 1993, 26, 813-824.	2.2	100
17	Nanoporous Thin Films from Self-Assembled Metallo- Supramolecular Block Copolymers. Advanced Materials, 2005, 17, 1162-1165.	11.1	97
18	Epitaxial Nucleation of Poly(ethylene terephthalate) by Talc:Â Structure at the Lattice and Lamellar Scales. Macromolecules, 2003, 36, 4452-4456.	2.2	90

#	Article	IF	CITATIONS
19	Layer-by-Layer Assembly of Polyelectrolytes in Nanopores. Macromolecules, 2007, 40, 3366-3372.	2.2	90
20	Electrospinning of a Functional Perfluorinated Block Copolymer as a Powerful Route for Imparting Superhydrophobicity and Corrosion Resistance to Aluminum Substrates. Langmuir, 2011, 27, 335-342.	1.6	90
21	High-Throughput Fabrication of Organic Nanowire Devices with Preferential Internal Alignment and Improved Performance. Nano Letters, 2007, 7, 3639-3644.	4.5	89
22	Surface and Bulk Collapse Transitions of Thermoresponsive Polymer Brushes. Langmuir, 2010, 26, 838-847.	1.6	89
23	Surface treatment and characterization: Perspectives to electrophoresis and lab-on-chips. Electrophoresis, 2006, 27, 584-610.	1.3	88
24	Urea potentiometric enzymatic biosensor based on charged biopolymers and electrodeposited polyaniline. Biosensors and Bioelectronics, 2011, 26, 4139-4145.	5. 3	88
25	Synthesis of gold nanoparticles inside polyelectrolyte brushes. Journal of Materials Chemistry, 2007, 17, 3433.	6.7	85
26	Effect of Nanoconfinement on the Collapse Transition of Responsive Polymer Brushes. Nano Letters, 2008, 8, 3819-3824.	4. 5	85
27	Layer-by-layer coating of degradable microgels for pulsed drug delivery. Journal of Controlled Release, 2006, 116, 159-169.	4.8	84
28	ToF-SIMS study of alternate polyelectrolyte thin films: Chemical surface characterization and molecular secondary ions sampling depth. Surface Science, 1996, 366, 149-165.	0.8	80
29	Kinetics of Exchange of Alkanethiol Monolayers Self-Assembled on Polycrystalline Gold. Langmuir, 2005, 21, 6825-6829.	1.6	77
30	Alignment and Assembly of Adsorbed Collagen Molecules Induced by Anisotropic Chemical Nanopatterns. Small, 2005, 1 , 984-991.	5.2	75
31	Confinement Induced Preferential Orientation of Crystals and Enhancement of Properties in Ferroelectric Polymer Nanowires. ACS Macro Letters, 2013, 2, 535-538.	2.3	72
32	A new route to thin polymeric, non-centrosymmetric coatings. Thin Solid Films, 1996, 284-285, 334-337.	0.8	65
33	Dilution-Induced Spheres-to-Vesicles Morphological Transition in Micelles from Block Copolymer/Surfactant Complexes. Journal of the American Chemical Society, 2005, 127, 6526-6527.	6.6	65
34	Encoding crystal microstructure and chain folding in the chemical structure of synthetic polymers. Nature Materials, 2004, 3, 33-37.	13.3	63
35	Differential scanning calorimetry and infra-red crystallinity determinations of poly(aryl ether ether) Tj ETQq1 10.	784314 rg	gBT_ Overlock
36	High temperature polymer nanofoams based on amorphous, high Tg polyimides. Polymer, 1995, 36, 987-1002.	1.8	59

#	Article	IF	CITATIONS
37	Diamond formation by thermal activation of graphite. Nature, 1999, 402, 162-165.	13.7	59
38	Strong electron-phonon coupling from thermal conductivity measurements in a YBa2Cu3O7-type superconducting compound. Solid State Communications, 1987, 63, 983-986.	0.9	58
39	Direct Observation of Crystalâ^'Amorphous Interphase in Lamellar Semicrystalline Poly(ethylene) Tj ETQq1 1 0.78	4314 rgBT 2.2	/Overlock 1
40	Spinodal-like dewetting of thermodynamically-stable thin polymer films. European Physical Journal E, 2003, 12, 389-396.	0.7	57
41	Control of crystal orientation in soft nanostructures by nanoimprint lithography. Soft Matter, 2010, 6, 21-28.	1.2	57
42	Ordered Polyelectrolyte "Multilayers― 3. Complexing Clay Platelets with Polycations of Varying Structure. Macromolecules, 2001, 34, 5267-5274.	2.2	55
43	One Step Growth of Protein Antifouling Surfaces:  Monolayers of Poly(ethylene oxide) (PEO) Derivatives on Oxidized and Hydrogen-Passivated Silicon Surfaces. Langmuir, 2006, 22, 1173-1181.	1.6	55
44	Molecular Engineering of Trifunctional Supported Catalysts for the Aerobic Oxidation of Alcohols. Angewandte Chemie - International Edition, 2016, 55, 11044-11048.	7.2	55
45	Correlation between the Structure and Wettability of Photoswitchable Hydrophilic Azobenzene Monolayers on Silicon. Langmuir, 2011, 27, 9403-9412.	1.6	54
46	Application of CuAAC for the covalent immobilization ofÂhomogeneous catalysts. Tetrahedron, 2014, 70, 1709-1731.	1.0	54
47	Temperature Dependence of the Surface and Volume Hydrophilicity of Hydrophilic Polymer Brushes. Langmuir, 2016, 32, 3433-3444.	1.6	52
48	Sequence and Surface Confinement Direct Cooperativity in Catalytic Precision Oligomers. Journal of the American Chemical Society, 2018, 140, 5179-5184.	6.6	52
49	Growth Mechanism of Confined Polyelectrolyte Multilayers in Nanoporous Templates. Langmuir, 2010, 26, 3350-3355.	1.6	51
50	Density Perturbations in Polymers Near a Solid Substrate:Â An X-ray Reflectivity Study. Macromolecules, 1999, 32, 4719-4724.	2.2	49
51	Characterization of the molecular structure of two highly isotactic polypropylenes. Polymer, 2001, 42, 1953-1967.	1.8	48
52	Environmentally Friendly Super-Water-Repellent Fabrics Prepared from Water-Based Suspensions. ACS Applied Materials & District Supersions. ACS Applied Materials & District Supersion Supe	4.0	48
53	Time-resolved SAXS studies of morphological changes in cold crystallized poly(ethylene) Tj ETQq1 1 0.784314 rg	BT ₁ Overloo	ck 10 Tf 50
54	Isothermal Growth and Reorganization upon Heating of a Single Poly(arylâ´'etherâ´'etherâ´'ketone) (PEEK) Spherulite, As Imaged by Atomic Force Microscopy. Macromolecules, 1998, 31, 4546-4550.	2.2	46

#	Article	IF	Citations
55	Polyelectrolyte Multilayers as Nanocontainers for Functional Hydrophilic Molecules. Langmuir, 2003, 19, 6178-6186.	1.6	46
56	Self-Exploding Lipid-Coated Microgels. Biomacromolecules, 2006, 7, 373-379.	2.6	46
57	Transparent superhydrophobic coatings from amphiphilic-fluorinated block copolymers synthesized by aqueous polymerization-induced self-assembly. Polymer Chemistry, 2016, 7, 3998-4003.	1.9	46
58	Interdependencies between the Evolution of Amorphous and Crystalline Regions during Isothermal Cold Crystallization of Poly(etherâ´'etherâ´'ketone). Macromolecules, 1999, 32, 1582-1592.	2.2	45
59	Ordered Polyelectrolyte Multilayers. Rules Governing Layering in Organic Binary Multilayers. Journal of the American Chemical Society, 2003, 125, 1859-1865.	6.6	45
60	Tuning the Orientation of an Antigen by Adsorption onto Nanostriped Templates. Journal of the American Chemical Society, 2005, 127, 4320-4325.	6.6	45
61	Uniaxial Alignment of Nanoconfined Columnar Mesophases. Nano Letters, 2007, 7, 2627-2632.	4.5	44
62	Chain Entropy and Wetting Energy Control the Shape of Nanopatterned Polymer Brushes. Macromolecules, 2008, 41, 6859-6863.	2.2	44
63	Integrating Proteins in Layer-by-Layer Assemblies Independently of their Electrical Charge. ACS Nano, 2018, 12, 8372-8381.	7.3	44
64	Design and engineering of multifunctional silica-supported cooperative catalysts. Catalysis Today, 2019, 334, 173-186.	2,2	44
65	Overcurvature describes the buckling and folding of rings from curved origami to foldable tents. Nature Communications, 2012, 3, 1290.	5.8	43
66	Superhydrophobic Aluminum Surfaces by Deposition of Micelles of Fluorinated Block Copolymers. Langmuir, 2010, 26, 2057-2067.	1.6	42
67	Electrografting of Poly(ethylene glycol) Acrylate: A One-Step Strategy for the Synthesis of Protein-Repellent Surfaces. Angewandte Chemie - International Edition, 2005, 44, 5505-5509.	7.2	41
68	Characterization of Long-Chain Aliphatic Polyesters:  Crystalline and Supramolecular Structure of PE22,4 Elucidated by X-ray Scattering and Nuclear Magnetic Resonance. Macromolecules, 2007, 40, 8714-8725.	2.2	41
69	Structure and Ferroelectric Properties of Nanoimprinted Poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10	T£ 50 182	Td (fluoride
70	Direct protein detection with a nano-interdigitated array gate MOSFET. Biosensors and Bioelectronics, 2009, 24, 3531-3537.	5.3	40
71	Nanopatterned self-assembled monolayers. Nanotechnology, 2006, 17, 1160-1165.	1.3	39
72	Nanodecoding by Dewetting. Advanced Materials, 2007, 19, 4453-4459.	11.1	39

#	Article	IF	Citations
73	One "Click―to controlled bifunctional supported catalysts for the Cu/TEMPO-catalyzed aerobic oxidation of alcohols. RSC Advances, 2016, 6, 36602-36605.	1.7	39
74	Oligo(ethylene glycol) monolayers by silanization of silicon wafers: Real nature and stability. Journal of Colloid and Interface Science, 2008, 324, 118-126.	5.0	38
75	The Semicrystalline Morphology of Poly(etherâ^'etherâ^'ketone) Blends with Poly(etherâ^'imide). Macromolecules, 1998, 31, 5352-5362.	2.2	37
76	Control of the Water Permeability of Polyelectrolyte Multilayers by Deposition of Charged Paraffin Particles. Langmuir, 2004, 20, 4898-4902.	1.6	37
77	First Insights into Electrografted Polymers by AFM-Based Force Spectroscopy. Macromolecules, 2006, 39, 8428-8433.	2.2	37
78	Nanoscale Design of Multifunctional Organic Layers for Low-Power High-Density Memory Devices. ACS Nano, 2014, 8, 3498-3505.	7.3	36
79	Polyelectrolyte complexes at interfaces. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 1033-1038.	0.9	35
80	Ordered Polyelectrolyte "Multilayers". 5. Photo-Cross-Linking of Hybrid Films Containing an Unsaturated and Hydrophobized Poly(diallylammonium) Salt and Exfoliated Clay. Macromolecules, 2002, 35, 5004-5012.	2.2	35
81	Morphological Study of Melt-Crystallized Poly(ethylene terephthalate). A. Comparison of Transmission Electron Microscopy and Small-Angle X-ray Scattering of Bulk Samples. Macromolecules, 2004, 37, 126-134.	2.2	35
82	Spatial Coordination of Cooperativity in Silica-Supported Cu/TEMPO/Imidazole Catalytic Triad. ACS Catalysis, 2018, 8, 6006-6011.	5.5	35
83	Ordered Polyelectrolyte Multilayers: Unidirectional FRET Cascade in Nanocompartmentalized Polyelectrolyte Multilayers. ChemPhysChem, 2009, 10, 137-143.	1.0	34
84	Staining of poly(ethylene terephthalate) by ruthenium tetroxide. Polymer, 2003, 44, 3229-3234.	1.8	33
85	Functionalization of Magnetic Nanowires by Charged Biopolymers. Biomacromolecules, 2008, 9, 2517-2522.	2.6	33
86	Application of original assemblies of polyelectrolytes, urease and electrodeposited polyaniline as sensitive films of potentiometric urea biosensors. Electrochimica Acta, 2014, 148, 53-61.	2.6	32
87	Bioactive Chemical Nanopatterns Impact Human Mesenchymal Stem Cell Fate. Nano Letters, 2013, 13, 3923-3929.	4.5	31
88	Scaled down glass transition temperature in confined polymer nanofibers. Nanoscale, 2016, 8, 14950-14955.	2.8	31
89	Atomic force microscopy imaging of single polymer spherulites during crystallization: application to a semi-crystalline blend. Polymer, 1999, 40, 5899-5905.	1.8	30
90	Ordered Polyelectrolyte "Multilayers― 6. Effect of Molecular Parameters on the Formation of Hybrid Multilayers Based on Poly(Diallylammonium) Salts and Exfoliated Clay. Chemistry of Materials, 2003, 15, 3625-3631.	3.2	30

#	Article	IF	CITATIONS
91	Nanoconfined Polyelectrolyte Multilayers. Advanced Materials, 2006, 18, 481-486.	11.1	30
92	Structural studies on thin organic coatings built by repeated adsorption of polyelectrolytes. Progress in Organic Coatings, 1998, 34, 108-118.	1.9	29
93	Mechanically Linked Poly(ethylene terephthalate). Macromolecules, 2004, 37, 7884-7892.	2.2	29
94	Bidimensional Response Maps of Adaptive Thermo- and pH-Responsive Polymer Brushes. Macromolecules, 2010, 43, 7744-7751.	2.2	29
95	Blends of polycarbonate and acrylic polymers: Crystallization of polycarbonate. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 2197-2210.	2.4	27
96	Roughness of free surfaces of bulk amorphous polymers as studied by x-ray surface scattering and atomic force microscopy. Physical Review B, 1999, 60, 5883-5894.	1.1	26
97	The crystallization of poly(aryl-ether-ether-ketone) (PEEK): reorganization processes during gradual reheating of cold-crystallized samples. Polymer, 2000, 41, 3719-3727.	1.8	26
98	Partial Dewetting of Polyethylene Thin Films on Rough Silicon Dioxide Surfaces. Langmuir, 2005, 21, 7427-7432.	1.6	26
99	Orientation of lamellar crystals and its correlation with switching behavior in ferroelectric P(VDF-TrFE) ultra-thin films. Polymer, 2014, 55, 970-977.	1.8	26
100	Layer-by-layer assembly of enzyme-loaded halloysite nanotubes for the fabrication of highly active coatings. Colloids and Surfaces B: Biointerfaces, 2019, 178, 508-514.	2.5	26
101	Polyelectrolytes bearing azobenzenes for the functionalization of multilayers. Macromolecular Symposia, 1999, 137, 1-24.	0.4	25
102	Layer-by-layer self-assembly of polyelectrolyte and the divalent salt of fluorescein. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 167, 31-35.	2.0	25
103	Atomic Force Microscopy Investigation of the Morphology and the Biological Activity of Protein-Modified Surfaces for Bio- and Immunosensors. Analytical Chemistry, 2007, 79, 6488-6495.	3.2	25
104	Ordered Polyelectrolyte "Multilayers― 4. Internal Structure of Clay-Based Multilayers. Journal of Physical Chemistry B, 2002, 106, 11246-11252.	1.2	24
105	Two-Step Polarization Switching in Ferroelectric Polymers. Physical Review Letters, 2015, 115, 267601.	2.9	24
106	Room-Temperature Magnetic Switching of the Electric Polarization in Ferroelectric Nanopillars. ACS Nano, 2018, 12, 576-584.	7.3	24
107	Self-Assembly of Protamine Biomacromolecule on Halloysite Nanotubes for Immobilization of Superoxide Dismutase Enzyme. ACS Applied Bio Materials, 2020, 3, 522-530.	2.3	24
108	Highly Versatile Approach for Preparing Functional Hybrid Multisegmented Nanotubes and Nanowires. Chemistry of Materials, 2012, 24, 1562-1567.	3.2	23

#	Article	IF	Citations
109	Polythiolactone-Based Redox-Responsive Layers for the Reversible Release of Functional Molecules. ACS Applied Materials & Diterfaces, 2014, 6, 22457-22466.	4.0	23
110	Controlling the Growth of Staphylococcus epidermidis by Layer-By-Layer Encapsulation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 16250-16259.	4.0	23
111	Solvent-free preparation of porous poly(l-lactide) microcarriers for cell culture. Acta Biomaterialia, 2018, 75, 300-311.	4.1	23
112	Design of experiments to assess the effect of culture parameters on the osteogenic differentiation of human adipose stromal cells. Stem Cell Research and Therapy, 2019, 10, 256.	2.4	23
113	A New Technique for Assembling Thin, Defined Multilayers. Angewandte Chemie International Edition in English, 1997, 36, 2788-2791.	4.4	22
114	One-Step Polymer Grafting from Silicon Nitride SPM Probes:Â From Isolated Chains to Brush Regime. Journal of the American Chemical Society, 2007, 129, 8410-8411.	6.6	22
115	Influence of chain interdiffusion between immiscible polymers on dewetting dynamics. Soft Matter, 2011, 7, 9951.	1.2	22
116	Thicker is Better? Synthesis and Evaluation of Wellâ€Defined Polymer Brushes with Controllable Catalytic Loadings. Chemistry - A European Journal, 2012, 18, 16226-16233.	1.7	22
117	Mechanical properties of nanotubes of polyelectrolyte multilayers. European Physical Journal E, 2008, 25, 343-348.	0.7	21
118	Correlation between Superhydrophobicity and the Power Spectral Density of Randomly Rough Surfaces. Langmuir, 2010, 26, 17798-17803.	1.6	21
119	Layer-by-layer assembly in nanochannels: assembly mechanism and applications. Nanoscale, 2021, 13, 7471-7497.	2.8	21
120	PEEK oligomers: a model for polymer physical behavior. 3. Nature of oligomers in the PEEK polymer. Macromolecules, 1993, 26, 2674-2678.	2.2	20
121	Influence of Charge Density and Distribution on the Internal Structure of Electrostatically Self-assembled Polyelectrolyte Films. Langmuir, 2002, 18, 1655-1660.	1.6	20
122	Formation of Vesicles in Block Copolymer-Fluorinated Surfactant Complexes. Langmuir, 2007, 23, 116-122.	1.6	20
123	Nanocontrolled Bending of Discotic Columns by Spiral Networks. Small, 2008, 4, 728-732.	5.2	20
124	Reversible Photomodulation of the Swelling of Poly(oligo(ethylene glycol) methacrylate) Thermoresponsive Polymer Brushes. Macromolecules, 2012, 45, 9400-9408.	2.2	20
125	Multiferroic Nanopatterned Hybrid Material with Roomâ€Temperature Magnetic Switching of the Electric Polarization. Advanced Materials, 2017, 29, 1604604.	11.1	20
126	Optimization of the structural parameters of new potentiometric pH and urea sensors based on polyaniline and a polysaccharide coupling layer. Sensors and Actuators B: Chemical, 2012, 166-167, 794-801.	4.0	19

#	Article	IF	CITATIONS
127	Discrete multifunctional sequence-defined oligomers with controlled chirality. Polymer Chemistry, 2020, 11, 4040-4046.	1.9	19
128	Crystalline structure of poly(methyl-n-propylsilane). Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 1533-1543.	2.4	18
129	Vitrification/devitrification phenomena during isothermal and nonisothermal crystallization of poly(aryl-ether-ether-ketone) (PEEK) and PEEK/poly(ether-imide) blends. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 919-930.	2.4	18
130	Interface characterization of nanoscale laminate structures on dense dielectric substrates by x-ray reflectivity. Journal of Applied Physics, 2005, 97, 084316.	1.1	18
131	Structural and Charge-Transport Properties of a Liquid-Crystalline $\hat{l}\pm, \hat{l}\%$ -Disubstituted Thiophene Derivative: A Joint Experimental and Theoretical Study. Journal of Physical Chemistry C, 2010, 114, 4617-4627.	1.5	18
132	Characterization of polyacrylonitrile films grafted onto nickel by ellipsometry, atomic force microscopy and X-ray reflectivity. Thin Solid Films, 1997, 310, 148-155.	0.8	17
133	Probing Thermoplastic Matrixâ^'Carbon Fiber Interphases. 1. Preferential Segregation of Low Molar Mass Chains to the Interface. Macromolecules, 2001, 34, 3725-3729.	2.2	17
134	Image analysis of transmission electron micrographs of semicrystalline polymers: a comparison with X-ray scattering results. Journal of Applied Crystallography, 2003, 36, 1019-1025.	1.9	17
135	A theoretical and experimental study of atomic-layer-deposited films onto porous dielectric substrates. Journal of Applied Physics, 2005, 98, 083515.	1.1	16
136	Evaporation induced micellization of poly(2-oxazoline) multiblock copolymers on surfaces. Soft Matter, 2007, 3, 79-82.	1.2	16
137	"Click―Silicaâ€Supported Sulfonic Acid Catalysts with Variable Acid Strength and Surface Polarity. Chemistry - A European Journal, 2019, 25, 6753-6762.	1.7	16
138	PEEK oligomers: a model for the polymer physical behavior. 2. Structure and thermal behavior of linear monodisperse oligomers. Macromolecules, 1993, 26, 526-538.	2.2	15
139	Morphological study of melt-crystallized poly(ethylene terephthalate): B. Thin films. Polymer, 2003, 44, 8053-8059.	1.8	15
140	Materials characterization of WNxCy, WNx and WCx films for advanced barriers. Microelectronic Engineering, 2007, 84, 2460-2465.	1.1	15
141	Characterization of ultrathin SOI film and application to short channel MOSFETs. Nanotechnology, 2008, 19, 165703.	1.3	15
142	Room temperature atomic layer deposition of Al2O3 and replication of butterfly wings for photovoltaic application. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	15
143	Degradation of bare and silanized silicon wafer surfaces by constituents of biological fluids. Journal of Colloid and Interface Science, 2012, 378, 77-82.	5.0	15
144	PEEK Oligomers as Physical Model Compounds for the Polymer. 4. Lamellar Microstructure and Chain Dynamics Macromolecules, 2000, 33, 562-568.	2.2	14

#	Article	IF	Citations
145	Template Approach for Novel Magnetic–Ferroelectric Nanocomposites. Applied Physics Express, 2011, 4, 115001.	1.1	14
146	Molecular Engineering of Trifunctional Supported Catalysts for the Aerobic Oxidation of Alcohols. Angewandte Chemie, 2016, 128, 11210-11214.	1.6	14
147	One-Step Aqueous Spraying Process for the Fabrication of Omniphobic Fabrics Free of Long Perfluoroalkyl Chains. ACS Omega, 2019, 4, 16660-16666.	1.6	14
148	How roughness controls the water repellency of woven fabrics. Materials and Design, 2020, 187, 108389.	3.3	14
149	PEEK oligomers: a model for the polymer physical behavior. 1. Synthesis and characterization of linear monodisperse oligomers. Macromolecules, 1992, 25, 5841-5850.	2.2	13
150	Poly(N-isopropylacrylamide) grafted into nanopores: Thermo-responsive behaviour in the presence of different salts. Polymer Degradation and Stability, 2010, 95, 327-331.	2.7	13
151	Quantitative Collection and Enzymatic Activity of Glucose Oxidase Nanotubes Fabricated by Templated Layer-by-Layer Assembly. Biomacromolecules, 2015, 16, 2382-2393.	2.6	13
152	Local Maps of the Polarization and Depolarization in Organic Ferroelectric Field-Effect Transistors. Scientific Reports, 2016, 6, 22116.	1.6	13
153	Uptake of Long Protein-Polyelectrolyte Nanotubes by Dendritic Cells. Biomacromolecules, 2017, 18, 4299-4306.	2.6	13
154	Synthesis of discrete catalytic oligomers and their potential in silica-supported cooperative catalysis. RSC Advances, 2019, 9, 14194-14197.	1.7	13
155	Poly(methylphenyl) silane: Structural properties. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 1727-1736.	2.4	12
156	Orientation of functional groups in polyelectrolyte multilayers studied by second-harmonic generation (SHG). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 275-280.	2.3	12
157	Nanotemplated Crystallization of Organic Molecules. Small, 2006, 2, 892-897.	5.2	12
158	Control of Swelling of Responsive Nanogels by Nanoconfinement. Small, 2012, 8, 2978-2985.	5.2	12
159	An organic ferroelectric field effect transistor with poly(vinylidene fluoride-co-trifluoroethylene) nanostripes as gate dielectric. Applied Physics Letters, 2014, 105, 113113.	1.5	12
160	Effects of geometrical confinement in membrane pores on enzyme-based layer-by-layer assemblies. Applied Surface Science, 2015, 338, 154-162.	3.1	12
161	Universal Method to Transfer Membrane-Templated Nano-Objects to Aqueous Solutions. Langmuir, 2015, 31, 7264-7273.	1.6	12
162	Nanopapers of layer-by-layer nanotubes. Journal of Materials Chemistry B, 2016, 4, 7651-7661.	2.9	12

#	Article	IF	CITATIONS
163	Local polarization switching in stressed ferroelectric polymers. Applied Physics Letters, 2017, 110, .	1.5	12
164	Amphotropic LC Polymers and Their Multilayer Buildup. Macromolecules, 2005, 38, 9124-9134.	2.2	11
165	Guiding the Selfâ€Assembly of a Secondâ€Generation Polyphenylene Dendrimer into Wellâ€Defined Patterns. Small, 2008, 4, 1160-1167.	5. 2	11
166	Variation of Elastic Properties of Responsive Polymer Nanotubes. Journal of Physical Chemistry B, 2010, 114, 4939-4944.	1.2	11
167	Melting and van der Waals Stabilization of PE Single Crystals Grown from Ultrathin Films. Macromolecules, 2011, 44, 7752-7757.	2.2	11
168	Electrosynthesis of pyrrole 3-carboxylic acid copolymer films and nanotubes with tunable degree of functionalization for biomedical applications. Electrochimica Acta, 2011, 56, 3641-3648.	2.6	11
169	The Ferro- to Paraelectric Curie Transition of a Strongly Confined Ferroelectric Polymer. Macromolecules, 2014, 47, 4711-4717.	2.2	11
170	Transmission electron microscopy studies on selectively stained poly(aryl-ether-ether-ketone)/poly(ether-imide) semicrystalline blends. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 2565-2570.	2.4	10
171	Melt properties and crystal morphology of polydodecamide plasticized by benzenesulfonamides. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 2022-2034.	2.4	10
172	Chemoselective oxidation of 2-thiomethyl-4,6-dimethyl-pyrimidine and 2-thiobenzyl-4,6-dimethyl-pyrimidine over titania-silica catalysts. Applied Catalysis A: General, 2003, 242, 77-84.	2.2	10
173	Nano-patterned layers of a grafted coumarinic chromophore. Photochemical and Photobiological Sciences, 2008, 7, 460-466.	1.6	10
174	Grafting Control of Mainstay Terpyridine Self-Assembled Monolayers for the Preparation of Planar Silicon Surfaces with Variable Catalytic Loadings. Langmuir, 2012, 28, 14822-14828.	1.6	10
175	Increased Catalytic Activity of Surfaceâ€Immobilized Palladium Complexes in the Fluorogenic Deprotection of an Allocâ€Derivatized Coumarin. Chemistry - A European Journal, 2012, 18, 788-792.	1.7	10
176	Nanofibrillar Patches of Commensal Skin Bacteria. Biomacromolecules, 2019, 20, 102-108.	2.6	10
177	Influence of Site Pairing in Hydrophobic Silica-Supported Sulfonic Acid Bifunctional Catalysts. Langmuir, 2020, 36, 13743-13751.	1.6	10
178	Thermally Induced Flexo†Type Effects in Nanopatterned Multiferroic Layers. Advanced Functional Materials, 2020, 30, 1910371.	7.8	10
179	Sequences distribution of poly(ethylene terephthalateâ€isophthalate) copolymers: Experimental TREF study and numerical simulation. Macromolecular Symposia, 1999, 148, 59-75.	0.4	9
180	Liquid and vapor phase silanes coating for the release of thin film MEMS. IEEE Transactions on Device and Materials Reliability, 2005, 5, 250-254.	1.5	9

#	Article	IF	Citations
181	Investigation of Thermoresponsive Nanoâ€Confined Polymer Brushes by AFMâ€Based Force Spectroscopy. Macromolecular Chemistry and Physics, 2012, 213, 580-586.	1.1	9
182	Effects of Thickness and Grafting Density on the Activity of Polymerâ€Brushâ€Immobilized Tris(triazolyl) Copper(I) Catalysts. ChemCatChem, 2015, 7, 856-864.	1.8	9
183	Dielectric properties of PET below its glass transition temperature. Microelectronic Engineering, 1997, 33, 377-384.	1.1	8
184	Y-type Langmuirâ^'Blodgett Films of 2,3-Bis((2-hydroxyethyl)oxy)-6,7,10,11-tetrakis(pentyloxy)triphenylene:Â An X-ray Reflection Study. Langmuir, 1998, 14, 5250-5254.	1.6	8
185	An Attempt To Separate Roughness from Interdiffusion in the Interfacial Broadening between Two Immiscible Polymers. Macromolecules, 2000, 33, 3031-3041.	2.2	8
186	Morphology and Temperature Phase Transitions inî±,ï‰-Alkanediols with Different Chain Lengths. Macromolecular Symposia, 2004, 214, 317-338.	0.4	8
187	The impact of the density and type of reactive sites on the characteristics of the atomic layer deposited WNxCy films. Journal of Applied Physics, 2006, 99, 063515.	1.1	8
188	Hierarchical growth of curved organic nanowires upon evaporation induced self-assembly. Chemical Communications, 2014, 50, 13216-13219.	2.2	8
189	Organic ferroelectric/semiconducting nanowire hybrid layer for memory storage. Nanoscale, 2016, 8, 5968-5976.	2.8	8
190	Hydrogen-Bonded Multilayers for the Release of Polyelectrolyte Nanotubes in Biocompatible Conditions. ACS Applied Polymer Materials, 2019, 1, 2407-2416.	2.0	8
191	Sequence Rules the Functional Connections and Efficiency of Catalytic Precision Oligomers. ACS Catalysis, 2022, 12, 2126-2131.	5.5	8
192	Synthesis and bulk characterization of new P(CB-b-S) diblock copolymers. Journal of Polymer Science Part A, 1999, 37, 233-244.	2.5	7
193	Extent of plasma damage to porous organosilicate films characterized with nanoindentation, x-ray reflectivity, and surface acoustic waves. Journal of Materials Research, 2006, 21, 3161-3167.	1.2	7
194	Resistance of Poly(ethylene oxide)â^'Silane Monolayers to the Growth of Polyelectrolyte Multilayers. Langmuir, 2007, 23, 9667-9673.	1.6	7
195	Low-power dihexylquaterthiophene-based thin film transistors for analog applications. Applied Physics Letters, 2008, 92, .	1.5	7
196	Layer-by-layer assembly of brushes of vertically-standing enzymatic nanotubes. Journal of Colloid and Interface Science, 2018, 514, 592-598.	5.0	7
197	Adaptation of the Rietveld Method for the Characterization of the Lamellar Microstructure of Polymers. Journal of Applied Crystallography, 1997, 30, 921-931.	1.9	6
198	Photoactuation of Droplet Motion. Angewandte Chemie - International Edition, 2010, 49, 3262-3263.	7.2	6

#	Article	IF	Citations
199	Osteogenic Differentiation of Adipose-Derived Stromal Cells: From Bench to Clinics. Tissue Engineering - Part B: Reviews, 2020, 26, 461-474.	2.5	6
200	Tuning the catalytic activity of enzymes embedded in layer-by-layer assembled films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127698.	2.3	6
201	Crystallization and chain adsorption of poly(etheretherketone) in discontinuous pitch-derived carbon fiber composites. Polymer Composites, 1993, 14, 491-502.	2.3	5
202	Study of thermal stability of nickel silicide by X-ray reflectivity. Microelectronic Engineering, 2005, 82, 492-496.	1.1	5
203	Characterization of atomic layer deposited nanoscale structure on dense dielectric substrates by X-ray reflectivity. Microelectronic Engineering, 2005, 82, 639-644.	1.1	5
204	Green and Tunable Animal Protein-Free Microcarriers for Cell Expansion. ACS Applied Materials & Samp; Interfaces, 2020, 12, 50303-50314.	4.0	5
205	Revealing the Organization of Catalytic Sequence-Defined Oligomers via Combined Molecular Dynamics Simulations and Network Analysis. Journal of Chemical Information and Modeling, 2022, 62, 2761-2770.	2.5	5
206	A comparison of the \hat{l}_{\pm} -relaxation of amorphous poly(aryl-ether-ether-ketone) (PEEK) probed by dielectric and dynamic mechanical analysis. Polymer, 1998, 39, 3577-3581.	1.8	4
207	Comparison of the Density of Proteins and Peptides Grafted on Silane Layers and Polyelectrolyte Multilayers. Biomacromolecules, 2014, 15, 3706-3716.	2.6	4
208	Microchannel Molding Combined with Layer-by-Layer Approach for the Formation of Three-Dimensional Tube-like Structures by Endothelial Cells. ACS Applied Bio Materials, 2020, 3, 1520-1532.	2.3	4
209	Argon gas cluster fragmentation and scattering as a probe of the surface physics of thermoset polymers. Applied Surface Science, 2020, 533, 147473.	3.1	4
210	Adaptation of the Rietveld method to the characterization of the lamellar microstructure of polymers. 2. Influence of a tilt of chain axesversusthe normal to basal planes of crystalline lamellae. Journal of Applied Crystallography, 1999, 32, 497-504.	1.9	3
211	Polymeric films from the alternating chemisorption of poly(vinylbenzylchloride) and a 4′-hydroxystilbazole dye. Materials Science and Engineering C, 2001, 18, 239-242.	3.8	3
212	Electrodeposition of mixed adherent thin films of poly(ethyl acrylate) and polyacrylonitrile onto nickel. E-Polymers, 2004, 4, .	1.3	3
213	Layers over Layer-by-Layer Assemblies: Silanization of Polyelectrolyte Multilayers. Langmuir, 2014, 30, 10057-10065.	1.6	3
214	Encapsulation of Commensal Skin Bacteria within Membraneâ€inâ€Gel Patches. Advanced Materials Interfaces, 2022, 9, .	1.9	3
215	Fatty Acid Monolayers on Randomly Nanostructured Inorganic Surfaces: Interplay of Wettability, Chemistry, and Topography. Langmuir, 2020, 36, 11845-11854.	1.6	2
216	Segregation Phenomena in Thin Films of Strongly Asymmetric Diblock Copolymers Deposited onto Solid Substrates. Macromolecules, 2000, 33, 4877-4885.	2.2	1

#	Article	IF	CITATIONS
217	Probing the Surface Curie Temperature of Ferroelectric P(VDF- <i>ran</i> -TrFE) Copolymers by Argon Gas Cluster Ion Scattering. Journal of Physical Chemistry C, 2022, 126, 1125-1131.	1.5	1
218	Nanopatterned monolayers of an adsorbed chromophore. Nanotechnology, 2008, 19, 335303.	1.3	0
219	Field-effect memory transistors based on arrays of nanowires of a ferroelectric polymer. , 2015, , .		O