
Thien Ngoc Truong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4350673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding the activity and stability of flame-made Co3O4 spinels: A route towards the scalable production of highly performing OER electrocatalysts. Chemical Engineering Journal, 2022, 429, 132180.	12.7	56
2	Electrical properties of perovskite solar cells by illumination intensity and temperatureâ€dependent photoluminescence imaging. Progress in Photovoltaics: Research and Applications, 2022, 30, 1038-1044.	8.1	7
3	Tuning the crystal structure and optical properties of selective area grown InGaAs nanowires. Nano Research, 2022, 15, 3695-3703.	10.4	5
4	Comparison of firing stability between p―and nâ€ŧype polysilicon passivating contacts. Progress in Photovoltaics: Research and Applications, 2022, 30, 970-980.	8.1	10
5	Morphology, microstructure, and doping behaviour: A comparison between different deposition methods for poly‣i/SiO _{<i>x</i>} passivating contacts. Progress in Photovoltaics: Research and Applications, 2021, 29, 857-868.	8.1	16
6	Boron Spin-On Doping for Poly-Si/SiO _{<i>x</i>} Passivating Contacts. ACS Applied Energy Materials, 2021, 4, 4993-4999.	5.1	9
7	Comparative studies of optoelectronic properties, structures, and surface morphologies for phosphorus-doped poly-Si/SiOx passivating contacts. , 2021, , .		0
8	Firing Stability of Polysilicon Passivating Contacts: The Role of Hydrogen. , 2021, , .		5
9	Contactless and Spatially Resolved Determination of Currentâ^`Voltage Curves in Perovskite Solar Cells via Photoluminescence. Solar Rrl, 2021, 5, 2100348.	5.8	7
10	Correction to "Boron Spin-On Doping for Poly-Si/SiOx Passivating Contacts― ACS Applied Energy Materials, 2021, 4, 6376-6376.	5.1	0
11	Contactless and Spatially Resolved Determination of Currentâ^ Voltage Curves in Perovskite Solar Cells via Photoluminescence. Solar Rrl, 2021, 5, 2170083.	5.8	1
12	Twist-driven wide freedom of indirect interlayer exciton emission in MoS2/WS2 heterobilayers. Cell Reports Physical Science, 2021, 2, 100509.	5.6	23
13	Impurity Gettering by Silicon Nitride Films: Kinetics, Mechanisms, and Simulation. ACS Applied Energy Materials, 2021, 4, 10849-10856.	5.1	7
14	Investigation of Gallium–Boron Spinâ€On Codoping for poly‣i/SiO _{<i>x</i>} Passivating Contacts. Solar Rrl, 2021, 5, 2100653.	5.8	3
15	Investigation of Gallium–Boron Spinâ€On Codoping for poly‣i/SiO _{<i>x</i>} Passivating Contacts. Solar Rrl, 2021, 5, .	5.8	1
16	Hydrogenation Mechanisms of Poly‣i/SiO _{<i>x</i>} Passivating Contacts by Different Capping Layers. Solar Rrl, 2020, 4, 1900476.	5.8	13
17	Spatially and Spectrally Resolved Absorptivity: New Approach for Degradation Studies in Perovskite and Perovskite/Silicon Tandem Solar Cells. Advanced Energy Materials, 2020, 10, 1902901.	19.5	9
18	Influence of PECVD deposition temperature on phosphorus doped poly-silicon passivating contacts. Solar Energy Materials and Solar Cells, 2020, 206, 110348.	6.2	24

THIEN NGOC TRUONG

#	Article	IF	CITATIONS
19	Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides. ACS Nano, 2020, 14, 14579-14604.	14.6	56
20	Deposition pressure dependent structural and optoelectronic properties of ex-situ boron-doped poly-Si/SiOx passivating contacts based on sputtered silicon. Solar Energy Materials and Solar Cells, 2020, 215, 110602.	6.2	17
21	Emission Control from Transition Metal Dichalcogenide Monolayers by Aggregation-Induced Molecular Rotors. ACS Nano, 2020, 14, 7444-7453.	14.6	23
22	Hydrogenation Mechanisms of Polyâ€Si/SiO _{<i>x</i>} Passivating Contacts by Different Capping Layers. Solar Rrl, 2020, 4, 2070033.	5.8	10
23	Tandem Solar Cells: Spatially and Spectrally Resolved Absorptivity: New Approach for Degradation Studies in Perovskite and Perovskite/Silicon Tandem Solar Cells (Adv. Energy Mater. 4/2020). Advanced Energy Materials, 2020, 10, 2070016.	19.5	0
24	Contactless, nondestructive determination of dopant profiles of localized boron-diffused regions in silicon wafers at room temperature. Scientific Reports, 2019, 9, 10423.	3.3	2
25	Solar Cells: Quantifying Quasiâ€Fermi Level Splitting and Mapping its Heterogeneity in Atomically Thin Transition Metal Dichalcogenides (Adv. Mater. 25/2019). Advanced Materials, 2019, 31, 1970180.	21.0	2
26	Quantifying Quasiâ€Fermi Level Splitting and Mapping its Heterogeneity in Atomically Thin Transition Metal Dichalcogenides. Advanced Materials, 2019, 31, e1900522.	21.0	34
27	Luminescence from poly-Si films and its application to study passivating-contact solar cells. , 2019, , .		0
28	Hydrogenation of polycrystalline silicon films for passivating contacts solar cells. , 2019, , .		2
29	Hydrogen-Assisted Defect Engineering of Doped Poly-Si Films for Passivating Contact Solar Cells. ACS Applied Energy Materials, 2019, 2, 8783-8791.	5.1	12
30	Hydrogenation of Phosphorus-Doped Polycrystalline Silicon Films for Passivating Contact Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 5554-5560.	8.0	47
31	Design and demonstration of a bio-inspired flapping-wing-assisted jumping robot. Bioinspiration and Biomimetics, 2019, 14, 036010.	2.9	36
32	Sub-Bandgap Luminescence from Doped Polycrystalline and Amorphous Silicon Films and Its Application to Understanding Passivating-Contact Solar Cells. ACS Applied Energy Materials, 2018, 1, 6619-6625.	5.1	18