Anna Maria Piras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4350593/publications.pdf Version: 2024-02-01

ANNA MADIA DIDAS

#	Article	IF	CITATIONS
1	Thiolated Hydroxypropyl-Î ² -cyclodextrin: A Potential Multifunctional Excipient for Ocular Drug Delivery. International Journal of Molecular Sciences, 2022, 23, 2612.	4.1	22
2	Saffron extract self-assembled nanoparticles to prolong the precorneal residence of crocin. Journal of Drug Delivery Science and Technology, 2022, 74, 103580.	3.0	2
3	Antivirulence Properties of a Low-Molecular-Weight Quaternized Chitosan Derivative against Pseudomonas aeruginosa. Microorganisms, 2021, 9, 912.	3.6	6
4	The Potential Role of Aerosolized Phosphodiesterase 3 Inhibitor Enoximone in the Management of Coronavirus Disease 2019 Hypoxemia: A Case Report. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2021, 34, 262-264.	1.4	1
5	Nanoparticles Based on Quaternary Ammonium Chitosan-methyl-β-cyclodextrin Conjugate for the Neuropeptide Dalargin Delivery to the Central Nervous System: An In Vitro Study. Pharmaceutics, 2021, 13, 5.	4.5	12
6	Combination of Two Kinds of Medicated Microparticles Based on Hyaluronic Acid or Chitosan for a Wound Healing Spray Patch. Pharmaceutics, 2021, 13, 2195.	4.5	9
7	Binding and mucoadhesion of sulfurated derivatives of quaternary ammonium-chitosans and their nanoaggregates: An NMR investigation. Journal of Pharmaceutical and Biomedical Analysis, 2020, 177, 112852.	2.8	12
8	Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy. Journal of Controlled Release, 2020, 327, 546-570.	9.9	121
9	Repurposing of Plasminogen: An Orphan Medicinal Product Suitable for SARS-CoV-2 Inhalable Therapeutics. Pharmaceuticals, 2020, 13, 425.	3.8	4
10	2-Methyl-β-cyclodextrin grafted ammonium chitosan: synergistic effects of cyclodextrin host and polymer backbone in the interaction with amphiphilic prednisolone phosphate salt as revealed by NMR spectroscopy. International Journal of Pharmaceutics, 2020, 587, 119698.	5.2	8
11	Quaternary Ammonium Chitosans: The Importance of the Positive Fixed Charge of the Drug Delivery Systems. International Journal of Molecular Sciences, 2020, 21, 6617.	4.1	34
12	Antioxidant Effect of Cocoa By-Product and Cherry Polyphenol Extracts: A Comparative Study. Antioxidants, 2020, 9, 132.	5.1	16
13	Improvement of Peptide Affinity and Stability by Complexing to Cyclodextrin-Grafted Ammonium Chitosan. Polymers, 2020, 12, 474.	4.5	11
14	pH-Responsive Carboxymethylcellulose Nanoparticles for 68Ga-WBC Labeling in PET Imaging. Polymers, 2019, 11, 1615.	4.5	9
15	A New Calcium Oral Controlled-Release System Based on Zeolite for Prevention of Osteoporosis. Nutrients, 2019, 11, 2467.	4.1	3
16	Anti-Inflammatory Effect of Cherry Extract Loaded in Polymeric Nanoparticles: Relevance of Particle Internalization in Endothelial Cells. Pharmaceutics, 2019, 11, 500.	4.5	18
17	Impact of Different Mucoadhesive Polymeric Nanoparticles Loaded in Thermosensitive Hydrogels on Transcorneal Administration of 5-Fluorouracil. Pharmaceutics, 2019, 11, 623.	4.5	25
18	Antibacterial, Antibiofilm, and Antiadhesive Properties of Different Quaternized Chitosan Derivatives. International Journal of Molecular Sciences, 2019, 20, 6297.	4.1	37

#	Article	IF	CITATIONS
19	A water-soluble, mucoadhesive quaternary ammonium chitosan-methyl-β-cyclodextrin conjugate forming inclusion complexes with dexamethasone. Journal of Materials Science: Materials in Medicine, 2018, 29, 42.	3.6	26
20	Endothelial progenitor cell secretome delivered by novel polymeric nanoparticles in ischemic hindlimb. International Journal of Pharmaceutics, 2018, 542, 82-89.	5.2	23
21	Chitosan-Based Nanoparticles Containing Cherry Extract from Prunus avium L. to Improve the Resistance of Endothelial Cells to Oxidative Stress. Nutrients, 2018, 10, 1598.	4.1	29
22	Methyl-β-cyclodextrin quaternary ammonium chitosan conjugate: nanoparticles vs macromolecular soluble complex. International Journal of Nanomedicine, 2018, Volume 13, 2531-2541.	6.7	19
23	Effect of Tumor Relevant Acidic Environment in the Interaction of a N-hydroxyindole-2-Carboxylic Derivative with the Phospholipid Bilayer. Pharmaceutical Research, 2018, 35, 175.	3.5	3
24	Impact of mucoadhesive polymeric nanoparticulate systems on oral bioavailability of a macromolecular model drug. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 130, 281-289.	4.3	35
25	Modelling of pancreatic ductal adenocarcinoma in vitro with three-dimensional microstructured hydrogels. RSC Advances, 2016, 6, 54226-54235.	3.6	33
26	Perspectives on polymeric nanostructures for the therapeutic application of antimicrobial peptides. Nanomedicine, 2016, 11, 1729-1744.	3.3	44
27	Levofloxacin-loaded star poly(ε-caprolactone) scaffolds by additive manufacturing. Journal of Materials Science: Materials in Medicine, 2016, 27, 44.	3.6	39
28	Chitosan Nanoparticles for the Linear Release of Model Cationic Peptide. Pharmaceutical Research, 2015, 32, 2259-2265.	3.5	32
29	MR imaging and targeting of human breast cancer cells with folate decorated nanoparticles. RSC Advances, 2015, 5, 39760-39770.	3.6	12
30	Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-term antibacterial activity in vitro against clinical isolates of Staphylococcus epidermidis. Frontiers in Microbiology, 2015, 06, 372.	3.5	146
31	Preparation, physical–chemical and biological characterization of chitosan nanoparticles loaded with lysozyme. International Journal of Biological Macromolecules, 2014, 67, 124-131.	7.5	59
32	Surface decorated poly(ester-ether-urethane)s nanoparticles: A versatile approach towards clinical translation. International Journal of Pharmaceutics, 2014, 475, 523-535.	5.2	8
33	Magnetism and spin dynamics of novel encapsulated iron oxide superparamagnetic nanoparticles. Dalton Transactions, 2013, 42, 10282.	3.3	4
34	Doxorubicin Loaded Polyurethanes Nanoparticles. Nano Biomedicine and Engineering, 2012, 4, .	0.9	11
35	2-Methoxy Aniline Grafted Poly(maleic anhydride- <i>alt</i> -butyl vinyl ether) Hemiester: A New Biocompatible Polymeric Free Radical Scavenger. Macromolecules, 2011, 44, 848-856.	4.8	12
36	Fibrin acts as biomimetic niche inducing both differentiation and stem cell marker expression of early human endothelial progenitor cells. Cell Proliferation, 2011, 44, 33-48.	5.3	86

ANNA MARIA PIRAS

#	Article	IF	CITATIONS
37	Hemoglobin loaded polymeric nanoparticles: Preparation and characterizations. European Journal of Pharmaceutical Sciences, 2011, 43, 57-64.	4.0	20
38	Statistical approach to the spectroscopic determination of the deacetylation degree of chitins and chitosans. Carbohydrate Polymers, 2011, 86, 65-71.	10.2	13
39	Polymeric nanostructured items electrospun on a cylindrical template: a simple procedure for their removal. Polymer International, 2011, 60, 1162-1166.	3.1	8
40	Optimized electro- and wet-spinning techniques for the production of polymeric fibrous scaffolds loaded with bisphosphonate and hydroxyapatite. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 253-263.	2.7	77
41	Dead Sea Minerals loaded polymeric nanoparticles. Colloids and Surfaces B: Biointerfaces, 2011, 87, 236-242.	5.0	11
42	A novel Electrospinning Procedure for the Production of Straight Aligned and Winded Fibers. Nano Biomedicine and Engineering, 2011, 3, .	0.9	3
43	Development of Electrospun Threeâ€arm Star Poly(<i>ε</i> â€caprolactone) Meshes for Tissue Engineering Applications. Macromolecular Bioscience, 2010, 10, 887-897.	4.1	41
44	Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 2010, 35, 403-440.	24.7	788
45	Poly(lactic-co-glycolic acid) electrospun fibrous meshes for the controlled release of retinoic acid. Acta Biomaterialia, 2010, 6, 1258-1268.	8.3	95
46	Chitosan-Based Beads for Controlled Release of Proteins. , 2009, , 111-120.		6
47	Bioactive Polymeric Materials for Targeted Administration of Active Agents: Synthesis and Evaluation. Macromolecular Bioscience, 2008, 8, 516-525.	4.1	18
48	Polymeric nanoparticles for hemoglobin-based oxygen carriers. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 1454-1461.	2.3	47
49	A new biocompatible nanoparticle delivery system for the release of fibrinolytic drugs. International Journal of Pharmaceutics, 2008, 357, 260-271.	5.2	46
50	Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications. Nanomedicine, 2008, 3, 367-393.	3.3	81
51	Electrospun Polymeric Meshes for Application in Tissue Engineering. Biomedicine and Pharmacotherapy, 2008, 62, 489-490.	5.6	2
52	Preparation and Characterization of Retinoic Acidic Loaded Nanoparticles for Cancer Therapy. Biomedicine and Pharmacotherapy, 2008, 62, 492.	5.6	1
53	New Multicomponent Bioerodible Electrospun Nanofibers for Dual-controlled Drug Release. Journal of Bioactive and Compatible Polymers, 2008, 23, 423-443.	2.1	43
54	Diclofenac sodium (DS) loaded bioerodible polymer based constructs. AIP Conference Proceedings, 2008, , .	0.4	0

ANNA MARIA PIRAS

#	Article	IF	CITATIONS
55	Biodegradable Nanomats Produced by Electrospinning: Expanding Multifunctionality and Potential for Tissue Engineering. Journal of Nanoscience and Nanotechnology, 2007, 7, 862-882.	0.9	71
56	Intracellular Fate Investigation of Bio-Eliminable Polymeric Nanoparticles by Confocal Laser Scanning Microscopy. Journal of Bioactive and Compatible Polymers, 2007, 22, 667-685.	2.1	4
57	Bioeliminable polymeric nanoparticles for proteic drug delivery. International Journal of Pharmaceutics, 2007, 343, 90-97.	5.2	22
58	Biodegradable Nanomats Produced by Electrospinning: Expanding Multifunctionality and Potential for Tissue Engineering. Journal of Nanoscience and Nanotechnology, 2006, 6, 2693-2711.	0.9	42
59	Development of Diclofenac Sodium Releasing Bio-Erodible Polymeric Nanomats. Journal of Nanoscience and Nanotechnology, 2006, 6, 3310-3320.	0.9	37
60	Novel Agmatine-Containing Poly(amidoamine) Hydrogels as Scaffolds for Tissue Engineering. Biomacromolecules, 2005, 6, 2229-2235.	5.4	70