Inaki Gandarias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4350542/publications.pdf

Version: 2024-02-01

201385 414034 2,520 35 27 32 citations h-index g-index papers 36 36 36 2817 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Heterogeneous acid-catalysts for the production of furan-derived compounds (furfural and) Tj ETQq1 1 0.784314	rgBT /Over	llock 10 Tf S
2	Hydrogenolysis of glycerol to propanediols over a Pt/ASA catalyst: The role of acid and metal sites on product selectivity and the reaction mechanism. Applied Catalysis B: Environmental, 2010, 97, 248-256.	10.8	198
3	Hydrodeoxygenation of the Angelica Lactone Dimer, a Celluloseâ€Based Feedstock: Simple, Highâ€Yield Synthesis of Branched C ₇ –C ₁₀ Gasolineâ€like Hydrocarbons. Angewandte Chemie - International Edition, 2014, 53, 1854-1857.	7.2	179
4	Liquid-phase glycerol hydrogenolysis by formic acid over Ni–Cu/Al2O3 catalysts. Journal of Catalysis, 2012, 290, 79-89.	3.1	159
5	New approaches to the Pt/WO /Al2O3 catalytic system behavior for the selective glycerol hydrogenolysis to 1,3-propanediol. Journal of Catalysis, 2015, 323, 65-75.	3.1	142
6	Glycerol hydrogenolysis into propanediols using in situ generated hydrogen – A critical review. European Journal of Lipid Science and Technology, 2013, 115, 9-27.	1.0	135
7	Eutectic mixtures of sugar alcohols for thermal energy storage in the 50–90°C temperature range. Solar Energy Materials and Solar Cells, 2015, 134, 215-226.	3.0	121
8	The role of tungsten oxide in the selective hydrogenolysis of glycerol to 1,3-propanediol over Pt/WOx/Al2O3. Applied Catalysis B: Environmental, 2017, 204, 260-272.	10.8	119
9	Liquid-phase glycerol hydrogenolysis to 1,2-propanediol under nitrogen pressure using 2-propanol as hydrogen source. Journal of Catalysis, 2011, 282, 237-247.	3.1	115
10	A comparison of sol–gel and impregnated Pt or/and Ni based γ-alumina catalysts for bioglycerol aqueous phase reforming. Applied Catalysis B: Environmental, 2012, 125, 516-529.	10.8	97
11	Hydrogenolysis through catalytic transfer hydrogenation: Glycerol conversion to 1,2-propanediol. Catalysis Today, 2012, 195, 22-31.	2.2	91
12	Oneâ€Pot 2â€Methyltetrahydrofuran Production from Levulinic Acid in Green Solvents Using Ni u/Al ₂ O ₃ Catalysts. ChemSusChem, 2015, 8, 3483-3488.	3.6	81
13	Deactivation study of the Pt and/or Ni-based \hat{l}^3 -Al2O3 catalysts used in the aqueous phase reforming of glycerol for H2 production. Applied Catalysis A: General, 2014, 472, 80-91.	2.2	71
14	From biomass to fuels: Hydrotreating of oxygenated compounds. International Journal of Hydrogen Energy, 2008, 33, 3485-3488.	3.8	68
15	Oxidation of lignocellulosic platform molecules to value-added chemicals using heterogeneous catalytic technologies. Catalysis Science and Technology, 2020, 10, 2721-2757.	2.1	60
16	Unraveling the Role of Formic Acid and the Type of Solvent in the Catalytic Conversion of Lignin: A Holistic Approach. ChemSusChem, 2017, 10, 754-766.	3.6	59
17	Thermocatalytic conversion of lignin in an ethanol/formic acid medium with NiMo catalysts: Role of the metal and acid sites. Applied Catalysis B: Environmental, 2017, 217, 353-364.	10.8	58
18	Production of furfural from pentosan-rich biomass: Analysis of process parameters during simultaneous furfural stripping. Bioresource Technology, 2013, 143, 258-264.	4.8	57

#	Article	IF	Citations
19	The Role of the Hydrogen Source on the Selective Production of γâ€Valerolactone and 2â€Methyltetrahydrofuran from Levulinic Acid. ChemSusChem, 2016, 9, 2488-2495.	3.6	56
20	Bioethanol/glycerol mixture steam reforming over Pt and PtNi supported on lanthana or ceria doped alumina catalysts. International Journal of Hydrogen Energy, 2012, 37, 8298-8309.	3.8	55
21	Structure-activity relationships of Ni-Cu/Al 2 O 3 catalysts for \hat{I}^3 -valerolactone conversion to 2-methyltetrahydrofuran. Applied Catalysis B: Environmental, 2017, 210, 328-341.	10.8	54
22	Gas reactions under intrapore condensation regime within tailored metal–organic framework catalysts. Nature Communications, 2019, 10, 2076.	5.8	45
23	Physicochemical Study of Glycerol Hydrogenolysis Over a Ni–Cu/Al2O3 Catalyst Using Formic Acid as the Hydrogen Source. Topics in Catalysis, 2013, 56, 995-1007.	1.3	41
24	Influence of the Support of Bimetallic Platinum Tungstate Catalysts on 1,3â€Propanediol Formation from Glycerol. ChemCatChem, 2017, 9, 4508-4519.	1.8	38
25	Production of 2-methylfuran from biomass through an integrated biorefinery approach. Fuel Processing Technology, 2018, 178, 336-343.	3.7	32
26	Selective Oxidation of <i>n< i>â€Butanol Using Goldâ€Palladium Supported Nanoparticles Under Baseâ€Free Conditions. ChemSusChem, 2015, 8, 473-480.</i>	3.6	28
27	The selective oxidation of n-butanol to butyraldehyde by oxygen using stable Pt-based nanoparticulate catalysts: an efficient route for upgrading aqueous biobutanol. Catalysis Science and Technology, 2016, 6, 4201-4209.	2.1	23
28	Process design and techno-economic analysis of gas and aqueous phase maleic anhydride production from biomass-derived furfural. Biomass Conversion and Biorefinery, 2020, 10, 1021-1033.	2.9	23
29	Solvent and catalyst effect in the formic acid aided lignin-to-liquids. Bioresource Technology, 2018, 270, 529-536.	4.8	18
30	Hydrotreating Catalytic Processes for Oxygen Removal in the Upgrading of Bio-Oils and Bio-Chemicals. , $2013, , .$		11
31	Insights into the Nature of the Active Sites of Pt-WOx/Al2O3 Catalysts for Glycerol Hydrogenolysis into 1,3-Propanediol. Catalysts, 2021, 11, 1171.	1.6	8
32	Integrated Environmental and Exergoeconomic Analysis of Biomassâ€Derived Maleic Anhydride. Advanced Sustainable Systems, 2022, 6, .	2.7	6
33	2-Methyl Tetrahydrofuran (MTHF) and its Use as Biofuel. Sustainable Chemistry Series, 2018, , 137-155.	0.1	0
34	2-Methyl Furan and Derived Biofuels. Sustainable Chemistry Series, 2018, , 111-136.	0.1	0
35	INTRODUCING SUSTAINABILITY AND THE AGENDA 2030 IN ENGINEERING DEGREES THROUGH THE RESEARCH BASED LEARNING METHODOLOGY. , 2020, , .		0

3