Markus D Petters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4350378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics, 2007, 7, 1961-1971.	1.9	2,020
2	Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proceedings of the United States of America, 2010, 107, 11217-11222.	3.3	945
3	Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon. Science, 2010, 329, 1513-1516.	6.0	541
4	Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. Atmospheric Chemistry and Physics, 2015, 15, 393-409.	1.9	315
5	A review of the anthropogenic influence on biogenic secondary organic aerosol. Atmospheric Chemistry and Physics, 2011, 11, 321-343.	1.9	297
6	Relative roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon basin. Nature Geoscience, 2009, 2, 402-405.	5.4	282
7	Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmospheric Chemistry and Physics, 2009, 9, 3303-3316.	1.9	268
8	The viscosity of atmospherically relevant organic particles. Nature Communications, 2018, 9, 956.	5.8	252
9	Cloud condensation nucleation activity of biomass burning aerosol. Journal of Geophysical Research, 2009, 114, .	3.3	213
10	Dynamics and Chemistry of Marine Stratocumulus—DYCOMS-II. Bulletin of the American Meteorological Society, 2003, 84, 579-594.	1.7	209
11	Large-Eddy Simulations of a Drizzling, Stratocumulus-Topped Marine Boundary Layer. Monthly Weather Review, 2009, 137, 1083-1110.	0.5	208
12	A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques. Atmospheric Chemistry and Physics, 2015, 15, 2489-2518.	1.9	200
13	Resurgence in Ice Nuclei Measurement Research. Bulletin of the American Meteorological Society, 2011, 92, 1623-1635.	1.7	199
14	Supplement to Dynamics and Chemistry of Marine Stratocumulus—DYCOMS-II. Bulletin of the American Meteorological Society, 2003, 84, 593-593.	1.7	199
15	Cloud droplet activation of secondary organic aerosol. Journal of Geophysical Research, 2007, 112, .	3.3	196
16	A single parameter representation of hygroscopic growth and cloud condensation nucleus activity – Part 2: Including solubility. Atmospheric Chemistry and Physics, 2008, 8, 6273-6279.	1.9	194
17	Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol: Part 1 – Evidence from measurements. Atmospheric Chemistry and Physics, 2009, 9, 3987-3997.	1.9	191
18	Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation. Atmospheric Chemistry and Physics, 2010, 10, 11471-11487.	1.9	175

#	Article	IF	CITATIONS
19	An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08). Atmospheric Chemistry and Physics, 2010, 10, 11415-11438.	1.9	170
20	Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles. Physical Chemistry Chemical Physics, 2009, 11, 7906.	1.3	165
21	Hygroscopicity and cloud droplet activation of mineral dust aerosol. Geophysical Research Letters, 2009, 36, .	1.5	159
22	Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size, liquid water path, and radiative impact. Journal of Geophysical Research, 2005, 110, .	3.3	144
23	Chemical aging and the hydrophobic-to-hydrophilic conversion of carbonaceous aerosol. Geophysical Research Letters, 2006, 33, .	1.5	137
24	Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol – Part 2: Theoretical approaches. Atmospheric Chemistry and Physics, 2009, 9, 3999-4009.	1.9	130
25	Ice nuclei emissions from biomass burning. Journal of Geophysical Research, 2009, 114, .	3.3	125
26	Revisiting ice nucleation from precipitation samples. Geophysical Research Letters, 2015, 42, 8758-8766.	1.5	123
27	A single parameter representation of hygroscopic growth and cloud condensation nucleus activity – Part 3: Including surfactant partitioning. Atmospheric Chemistry and Physics, 2013, 13, 1081-1091.	1.9	110
28	Water uptake and chemical composition of fresh aerosols generated in open burning of biomass. Atmospheric Chemistry and Physics, 2010, 10, 5165-5178.	1.9	104
29	Influences on the fraction of hydrophobic and hydrophilic black carbon in the atmosphere. Atmospheric Chemistry and Physics, 2011, 11, 5099-5112.	1.9	101
30	Influence of Functional Groups on Organic Aerosol Cloud Condensation Nucleus Activity. Environmental Science & Technology, 2014, 48, 10182-10190.	4.6	99
31	Laboratory investigations of the impact of mineral dust aerosol on cold cloud formation. Atmospheric Chemistry and Physics, 2010, 10, 11955-11968.	1.9	98
32	Single-parameter estimates of aerosol water content. Environmental Research Letters, 2008, 3, 035002.	2.2	97
33	lce Initiation by Aerosol Particles: Measured and Predicted Ice Nuclei Concentrations versus Measured Ice Crystal Concentrations in an Orographic Wave Cloud. Journals of the Atmospheric Sciences, 2010, 67, 2417-2436.	0.6	96
34	Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical Pacific marine boundary layer. Journal of Geophysical Research, 2006, 111, .	3.3	88
35	Influence of Functional Groups on the Viscosity of Organic Aerosol. Environmental Science & Technology, 2017, 51, 271-279.	4.6	87
36	The role of time in heterogeneous freezing nucleation. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3731-3743.	1.2	85

#	Article	IF	CITATIONS
37	Water interaction with hydrophobic and hydrophilic soot particles. Physical Chemistry Chemical Physics, 2008, 10, 2332.	1.3	83
38	Timescale for hygroscopic conversion of calcite mineral particles through heterogeneous reaction with nitric acid. Physical Chemistry Chemical Physics, 2009, 11, 7826.	1.3	82
39	The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): laboratory intercomparison of ice nucleation measurements. Atmospheric Measurement Techniques, 2018, 11, 6231-6257.	1.2	82
40	High Relative Humidity as a Trigger for Widespread Release of Ice Nuclei. Aerosol Science and Technology, 2014, 48, i-v.	1.5	80
41	Contribution of pollen to atmospheric ice nuclei concentrations. Atmospheric Chemistry and Physics, 2014, 14, 5433-5449.	1.9	79
42	Surfactant effect on cloud condensation nuclei for twoâ€component internally mixed aerosols. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1878-1895.	1.2	79
43	Trends in particle-phase liquid water during the Southern Oxidant and Aerosol Study. Atmospheric Chemistry and Physics, 2014, 14, 10911-10930.	1.9	75
44	On Measuring the Critical Diameter of Cloud Condensation Nuclei Using Mobility Selected Aerosol. Aerosol Science and Technology, 2007, 41, 907-913.	1.5	74
45	Comparative measurements of ambient atmospheric concentrations of ice nucleating particles using multiple immersion freezing methods and a continuous flow diffusion chamber. Atmospheric Chemistry and Physics, 2017, 17, 11227-11245.	1.9	73
46	Experimental study of the role of physicochemical surface processing on the IN ability of mineral dust particles. Atmospheric Chemistry and Physics, 2011, 11, 11131-11144.	1.9	70
47	Aerosol hygroscopicity and cloud droplet activation of extracts of filters from biomass burning experiments. Journal of Geophysical Research, 2008, 113, .	3.3	69
48	Role of molecular size in cloud droplet activation. Geophysical Research Letters, 2009, 36, .	1.5	69
49	Potential impact of Owens (dry) Lake dust on warm and cold cloud formation. Journal of Geophysical Research, 2007, 112, .	3.3	68
50	Ice nucleation behavior of biomass combustion particles at cirrus temperatures. Journal of Geophysical Research, 2009, 114, .	3.3	68
51	An annual cycle of sizeâ€resolved aerosol hygroscopicity at a forested site in Colorado. Journal of Geophysical Research, 2012, 117, .	3.3	65
52	Surface modification of mineral dust particles by sulphuric acid processing: implications for ice nucleation abilities. Atmospheric Chemistry and Physics, 2011, 11, 7839-7858.	1.9	60
53	Towards closing the gap between hygroscopic growth and CCN activation for secondary organic aerosols $\hat{a} \in \hat{a}$ Part 3: Influence of the chemical composition on the hygroscopic properties and volatile fractions of aerosols. Atmospheric Chemistry and Physics, 2010, 10, 3775-3785.	1.9	58
54	Temperature―and Humidityâ€Dependent Phase States of Secondary Organic Aerosols. Geophysical Research Letters, 2019, 46, 1005-1013.	1.5	53

#	Article	IF	CITATIONS
55	Cloud droplet activation of polymerized organic aerosol. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 196-205.	0.8	49
56	A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water. Atmospheric Chemistry and Physics, 2019, 19, 4823-4849.	1.9	48
57	Impact of Particle Generation Method on the Apparent Hygroscopicity of Insoluble Mineral Particles. Aerosol Science and Technology, 2010, 44, 830-846.	1.5	44
58	Hygroscopicity frequency distributions of secondary organic aerosols. Journal of Geophysical Research, 2012, 117, .	3.3	44
59	Supersaturation in the Wyoming CCN Instrument. Journal of Atmospheric and Oceanic Technology, 2006, 23, 1323-1339.	0.5	43
60	Heterogeneous ice nucleation measurements of secondary organic aerosol generated from ozonolysis of alkenes. Geophysical Research Letters, 2009, 36, .	1.5	43
61	Accurate Determination of Aerosol Activity Coefficients at Relative Humidities up to 99% Using the Hygroscopicity Tandem Differential Mobility Analyzer Technique. Aerosol Science and Technology, 2013, 47, 991-1000.	1.5	43
62	Minimal cooling rate dependence of ice nuclei activity in the immersion mode. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,535.	1.2	43
63	Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods. Geoscientific Model Development, 2016, 9, 111-124.	1.3	40
64	In Situ, Airborne Instrumentation: Addressing and Solving Measurement Problems in Ice Clouds. Bulletin of the American Meteorological Society, 2012, 93, ES29-ES34.	1.7	38
65	Characterization of the temperature and humidity-dependent phase diagram of amorphous nanoscale organic aerosols. Physical Chemistry Chemical Physics, 2017, 19, 6532-6545.	1.3	37
66	Amorphous phase state diagrams and viscosity of ternary aqueous organic/organic and inorganic/organic mixtures. Physical Chemistry Chemical Physics, 2018, 20, 15086-15097.	1.3	37
67	Optical particle counter measurement of marine aerosol hygroscopic growth. Atmospheric Chemistry and Physics, 2008, 8, 1949-1962.	1.9	36
68	The Role of Temperature in Cloud Droplet Activation. Journal of Physical Chemistry A, 2012, 116, 9706-9717.	1.1	36
69	100 Years of Progress in Cloud Physics, Aerosols, and Aerosol Chemistry Research. Meteorological Monographs, 2019, 59, 11.1-11.72.	5.0	35
70	Cloud droplet activation of secondary organic aerosol is mainly controlled by molecular weight, not water solubility. Atmospheric Chemistry and Physics, 2019, 19, 941-954.	1.9	35
71	Intercomparison of cloud condensation nuclei and hygroscopic fraction measurements: Coated soot particles investigated during the LACIS Experiment in November (LExNo). Journal of Geophysical Research, 2010, 115, .	3.3	34
72	Coalescence-based assessment of aerosol phase state using dimers prepared through a dual-differential mobility analyzer technique. Aerosol Science and Technology, 2016, 50, 1294-1305.	1.5	32

#	Article	IF	CITATIONS
73	Thermodynamic and kinetic behavior of glycerol aerosol. Aerosol Science and Technology, 2016, 50, 1385-1396.	1.5	30
74	Deliquescence-controlled activation of organic aerosols. Geophysical Research Letters, 2006, 33, .	1.5	29
75	Volatility and Viscosity Are Correlated in Terpene Secondary Organic Aerosol Formed in a Flow Reactor. Environmental Science and Technology Letters, 2019, 6, 513-519.	3.9	28
76	Cloud Particle Precursors. , 2009, , 291-318.		24
77	A language to simplify computation of differential mobility analyzer response functions. Aerosol Science and Technology, 2018, 52, 1437-1451.	1.5	22
78	The effect of hydrophobic glassy organic material on the cloud condensation nuclei activity of particles with different morphologies. Atmospheric Chemistry and Physics, 2019, 19, 3325-3339.	1.9	22
79	Hygroscopicity of Organic Compounds as a Function of Carbon Chain Length and Carboxyl, Hydroperoxy, and Carbonyl Functional Groups. Journal of Physical Chemistry A, 2017, 121, 5164-5174.	1.1	21
80	Characterization of Iceâ€Nucleating Particles Over Northern India. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10467-10482.	1.2	21
81	Predicting the influence of particle size on the glass transition temperature and viscosity of secondary organic material. Scientific Reports, 2020, 10, 15170.	1.6	21
82	Transport of pollution to a remote coastal site during gap flow from California's interior: impacts on aerosol composition, clouds, and radiative balance. Atmospheric Chemistry and Physics, 2017, 17, 1491-1509.	1.9	20
83	Hygroscopic growth and cloud droplet activation of xanthan gum as a proxy for marine hydrogels. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,803.	1.2	18
84	Condensation Kinetics of Water on Amorphous Aerosol Particles. Journal of Physical Chemistry Letters, 2018, 9, 3708-3713.	2.1	18
85	Measuring Mass-Based Hygroscopicity of Atmospheric Particles through in Situ Imaging. Environmental Science & Technology, 2016, 50, 5172-5180.	4.6	17
86	Observations of ice nucleation by ambient aerosol in the homogeneous freezing regime. Geophysical Research Letters, 2010, 37, .	1.5	15
87	Toward closure between predicted and observed particle viscosity over a wide range of temperatures and relative humidity. Atmospheric Chemistry and Physics, 2021, 21, 1127-1141.	1.9	12
88	Aerosol Properties Observed in the Subtropical North Pacific Boundary Layer. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9990.	1.2	11
89	Observations of new particle formation, modal growth rates, and direct emissions of sub-10 nm particles in an urban environment. Atmospheric Environment, 2020, 242, 117835.	1.9	10
90	Characterization of a dimer preparation method for nanoscale organic aerosol. Aerosol Science and Technology, 2019, 53, 998-1011.	1.5	9

#	Article	IF	CITATIONS
91	Bioaerosol Diversity and Ice Nucleating Particles in the Northâ€Western Himalayan Region. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	8
92	Possible Wintertime Sources of Fine Particles in an Urban Environment. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13055-13070.	1.2	7
93	Aerosol microphysical impact on summertime convective precipitation in the Rocky Mountain region. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,709-11,728.	1.2	6
94	Hygroscopicity―and Sizeâ€Resolved Measurements of Submicron Aerosol on the East Coast of the United States. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1826-1839.	1.2	6
95	Discrimination between individual dust and bioparticles using aerosol time-of-flight mass spectrometry. Aerosol Science and Technology, 2022, 56, 592-608.	1.5	6
96	Droplet activation of wet particles: development of the Wet CCN approach. Atmospheric Measurement Techniques, 2014, 7, 2227-2241.	1.2	5
97	Revisiting matrix-based inversion of scanning mobility particle sizer (SMPS) and humidified tandem differential mobility analyzer (HTDMA) data. Atmospheric Measurement Techniques, 2021, 14, 7909-7928.	1.2	5
98	Corrigendum to "An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08)" published in Atmos. Chem. Phys., 10, 11415–11438, 2010. Atmospheric Chemistry an Physics, 2010, 10, 11565-11565.	d 1.9	4
99	Classification of aerosol population type and cloud condensation nuclei properties in a coastal California littoral environment using an unsupervised cluster model. Atmospheric Chemistry and Physics, 2019, 19, 6931-6947.	1.9	4
100	Understanding aerosol–cloud interactions through modeling the development of orographic cumulus congestus during IPHEx. Atmospheric Chemistry and Physics, 2019, 19, 1413-1437.	1.9	4
101	The role of dynamic surface tension in cloud droplet activation. , 2013, , .		3
102	Continuous flow hygroscopicity-resolved relaxed eddy accumulation (Hy-Res REA) method of measuring size-resolved sodium chloride particle fluxes. Aerosol Science and Technology, 2018, 52, 433-450.	1.5	3
103	Open-hardware design and characterization of an electrostatic aerosol precipitator. HardwareX, 2022, 11, e00266.	1.1	3
104	Interactive Worksheets for Teaching Atmospheric Aerosols and Cloud Physics. Bulletin of the American Meteorological Society, 2021, 102, E672-E680.	1.7	1
105	Optical Particle Counter Measurement of Marine Aerosol Hygroscopic Growth. , 2007, , 1185-1189.		0