
Alessandro C Ramos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4350298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecophysiology of iron homeostasis in plants. Soil Science and Plant Nutrition, 2016, 62, 39-47.	0.8	66
2	Proton (H ⁺) flux signature for the presymbiotic development of the arbuscular mycorrhizal fungi. New Phytologist, 2008, 178, 177-188.	3.5	64
3	Humic matter elicits proton and calcium fluxes and signaling dependent on Ca2+-dependent protein kinase (CDPK) at early stages of lateral plant root development. Chemical and Biological Technologies in Agriculture, 2015, 2, .	1.9	49
4	Biochemical and ecophysiological responses to manganese stress by ectomycorrhizal fungus Pisolithus tinctorius and in association with Eucalyptus grandis. Mycorrhiza, 2016, 26, 475-487.	1.3	38
5	The essential oil of Brazilian pepper, Schinus terebinthifolia Raddi in Iarval control of Stegomyia aegypti (Linnaeus, 1762). Parasites and Vectors, 2010, 3, 79.	1.0	34
6	Programmed cell death in yeast by thionin-like peptide from <i>Capsicum annuum</i> fruits involving activation of caspases and extracellular H+ flux. Bioscience Reports, 2018, 38, .	1.1	31
7	A pH signaling mechanism involved in the spatial distribution of calcium and anion fluxes in ectomycorrhizal roots. New Phytologist, 2009, 181, 448-462.	3.5	25
8	Inoculation With Piriformospora indica Is More Efficient in Wild-Type Rice Than in Transgenic Rice Over-Expressing the Vacuolar H+-PPase. Frontiers in Microbiology, 2019, 10, 1087.	1.5	23
9	Crop management as a driving force of plant growth promoting rhizobacteria physiology. SpringerPlus, 2016, 5, 1574.	1.2	22
10	Arbuscular mycorrhizal fungi induce differential activation of the plasma membrane and vacuolar H+ pumps in maize roots. Mycorrhiza, 2009, 19, 69-80.	1.3	21
11	Embryogenic Competence Acquisition in Sugar Cane Callus Is Associated with Differential H ⁺ -Pump Abundance and Activity. Journal of Proteome Research, 2018, 17, 2767-2779.	1.8	21
12	Humic acids and Herbaspirillum seropedicae change the extracellular H+ flux and gene expression in maize roots seedlings. Chemical and Biological Technologies in Agriculture, 2019, 6, .	1.9	20
13	Inoculation with the endophytic bacterium Herbaspirillum seropedicae promotes growth, nutrient uptake and photosynthetic efficiency in rice. Planta, 2020, 252, 87.	1.6	20
14	An outlook on ion signaling and ionome of mycorrhizal symbiosis. Brazilian Journal of Plant Physiology, 2011, 23, 79-89.	0.5	18
15	Volatile compounds profile changes from unripe to ripe fruits of Brazilian pepper (Schinus) Tj ETQq1 1 0.78431	4 rg <u>BT</u> /Ov 2.5	verlock 10 Tf
16	Alleviation of iron toxicity in Schinus terebinthifolius Raddi (Anacardiaceae) by humic substances. Environmental Science and Pollution Research, 2018, 25, 9416-9425.	2.7	15
17	Conventional farming disrupts cooperation among phosphate solubilising bacteria isolated from Carica papaya's rhizosphere. Applied Soil Ecology, 2018, 124, 284-288.	2.1	15
18	Mid infrared spectroscopy for comparative analysis of fermented arabica and robusta coffee. Food Control, 2021, 121, 107625.	2.8	15

Alessandro C Ramos

#	Article	IF	CITATIONS
19	Plantâ€microbe symbioses: new insights into common roots. BioEssays, 2009, 31, 1233-1244.	1.2	14
20	Soil macrofauna in organic and conventional coffee plantations in Brazil. Biota Neotropica, 2018, 18, .	0.2	11
21	Spermine modulates fungal morphogenesis and activates plasma membrane H+-ATPase during yeast to hyphae transition. Biology Open, 2018, 7, .	0.6	10
22	The Free-Living Stage Growth Conditions of the Endophytic Fungus Serendipita indica May Regulate Its Potential as Plant Growth Promoting Microbe. Frontiers in Microbiology, 2020, 11, 562238.	1.5	10
23	Mechanistic basis for morphological damage induced by essential oil from Brazilian pepper tree, Schinus terebinthifolia, on larvae of Stegomyia aegypti, the dengue vector. Parasites and Vectors, 2015, 8, 136.	1.0	9
24	Atividade ATPásica e pirofosfatásica em microssomos de raÃzes de milho colonizadas com fungos micorrÃzicos arbusculares. Revista Brasileira De Ciencia Do Solo, 2005, 29, 207-213.	0.5	8
25	Ion Dynamics During the Polarized Growth of Arbuscular Mycorrhizal Fungi: From Presymbiosis to Symbiosis. , 2008, , 241-260.		7
26	Àidos húmicos de vermicomposto estimulam o crescimento in vitro de plântulas de Cattleya warneri(Orchidaceae). Rodriguesia, 2015, 66, 759-768.	0.9	7
27	Chemical and microbiological soil properties in organic and conventional management systems of <i>Coffea arabica</i> L Journal of Plant Nutrition, 2017, 40, 2076-2086.	0.9	6
28	Heavy Metal Stress and Molecular Approaches inÂPlants. , 2016, , 531-543.		5
29	Discriminating Organic and Conventional Coffee Production Systems Through Soil and Foliar Analysis Using Multivariate Approach. Communications in Soil Science and Plant Analysis, 2019, 50, 651-661.	0.6	5
30	pH signature for the responses of arbuscular mycorrhizal fungi to external stimuli. Plant Signaling and Behavior, 2008, 3, 850-852.	1.2	4
31	Plasma membrane H+ pump at a crossroads of acidic and iron stresses in yeast-to-hypha transition. Metallomics, 2020, 12, 2174-2185.	1.0	3
32	Arbuscular Mycorrhiza in Physiological and Morphological Adaptations of Mediterranean Plants. , 2008, , 733-752.		2
33	Linking Plant Nutritional Status to Plant-AMF Interactions. Microorganisms for Sustainability, 2018, , 351-384.	0.4	2
34	<i>Coffea canephora</i> Peptides in Combinatorial Treatment with Fluconazole: Antimicrobial Activity against Phytopathogenic Fungus. International Journal of Microbiology, 2018, 2018, 1-10.	0.9	2
35	Biochemical and cellularchanges in <i>Oreochromis niloticus</i> related to the water pollution of a degraded river - doi: 10.4025/actascibiolsci.v35i3.13207. Acta Scientiarum - Biological Sciences, 2013, 35, .	0.3	1
36	Overview of the Role of Nitrogen in Copper Pollution and Bioremediation Mediated by Plant–Microbe Interactions. Soil Biology, 2021, , 249-264.	0.6	1

#	Article	IF	CITATIONS
37	Iron Toxicity and Its Relation to Nitrogen and Phosphorus Availability in Ectomycorrhizal Fungi. Soil Biology, 2021, , 459-479.	0.6	Ο