Lakshmi Prasanna Lingamdinne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4350129/publications.pdf

Version: 2024-02-01

41 papers 2,233 citations

257450 24 h-index 315739 38 g-index

41 all docs

41 docs citations

41 times ranked

2171 citing authors

#	Article	IF	CITATIONS
1	A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. Journal of Environmental Management, 2019, 231, 622-634.	7.8	253
2	Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chemical Engineering Journal, 2017, 307, 74-84.	12.7	226
3	Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides. Journal of Hazardous Materials, 2017, 326, 145-156.	12.4	188
4	Studies on removal of Pb(II) and Cr(III) using graphene oxide based inverse spinel nickel ferrite nano-composite as sorbent. Hydrometallurgy, 2016, 165, 64-72.	4.3	149
5	Adsorption removal of Co(II) from waste-water using graphene oxide. Hydrometallurgy, 2016, 165, 90-96.	4.3	140
6	Process optimization and adsorption modeling of Pb(II) on nickel ferrite-reduced graphene oxide nano-composite. Journal of Molecular Liquids, 2018, 250, 202-211.	4.9	129
7	Process optimization and modeling of lead removal using iron oxide nanocomposites generated from bio-waste mass. Chemosphere, 2020, 243, 125257.	8.2	84
8	Effective removal of bisphenol A (BPA) from water using a goethite/activated carbon composite. Chemical Engineering Research and Design, 2016, 103, 87-96.	5.6	77
9	Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes. Scientific Reports, 2016, 6, 34419.	3.3	71
10	Facile synthesis of economical feasible fly ash–based zeolite–supported nano zerovalent iron and nickel bimetallic composite for the potential removal of heavy metals from industrial effluents. Chemosphere, 2021, 267, 128889.	8.2	71
11	Magnetic-watermelon rinds biochar for uranium-contaminated water treatment using an electromagnetic semi-batch column with removal mechanistic investigations. Chemosphere, 2022, 286, 131776.	8.2	70
12	Multivariate modeling via artificial neural network applied to enhance methylene blue sorption using graphene-like carbon material prepared from edible sugar. Journal of Molecular Liquids, 2018, 265, 416-427.	4.9	58
13	Porous graphene oxide based inverse spinel nickel ferrite nanocomposites for the enhanced adsorption removal of arsenic. RSC Advances, 2016, 6, 73776-73789.	3.6	57
14	Facile synthesis of flowered mesoporous graphene oxide-lanthanum fluoride nanocomposite for adsorptive removal of arsenic. Journal of Molecular Liquids, 2019, 279, 32-42.	4.9	54
15	Potential of the magnetic hollow sphere nanocomposite (graphene oxide-gadolinium oxide) for arsenic removal from real field water and antimicrobial applications. Journal of Hazardous Materials, 2021, 402, 123882.	12.4	52
16	Process modeling and optimization of an iron oxide immobilized graphene oxide gadolinium nanocomposite for arsenic adsorption. Journal of Molecular Liquids, 2020, 299, 112261.	4.9	47
17	Enhanced Adsorption Removal of Pb(II) and Cr(III) by Using Nickel Ferrite-Reduced Graphene Oxide Nanocomposite. Metals, 2017, 7, 225.	2.3	45
18	Influencing factors on sorption of TNT and RDX using rice husk biochar. Journal of Industrial and Engineering Chemistry, 2015, 32, 178-186.	5.8	44

#	Article	IF	CITATIONS
19	Predictive capability evaluation and optimization of Pb(II) removal by reduced graphene oxide-based inverse spinel nickel ferrite nanocomposite. Environmental Research, 2022, 204, 112029.	7.5	44
20	Low-cost magnetized Lonicera japonica flower biomass for the sorption removal of heavy metals. Hydrometallurgy, 2016, 165, 81-89.	4.3	42
21	Fabrication of chitosan/graphene oxide-gadolinium nanorods as a novel nanocomposite for arsenic removal from aqueous solutions. Journal of Molecular Liquids, 2020, 320, 114410.	4.9	40
22	Synthesis and characterization of hexagonal Mg Fe layered double hydroxide/grapheme oxide nanocomposite for efficient adsorptive removal of cadmium ion from aqueous solutions: Isotherm, kinetic, thermodynamic and mechanism. Journal of Water Process Engineering, 2022, 47, 102746.	5.6	39
23	Highly efficient surface sequestration of Pb2+ and Cr3+ from water using a Mn3O4 anchored reduced graphene oxide: Selective removal of Pb2+ from real water. Chemosphere, 2022, 299, 134457.	8.2	30
24	Green Synthesis of Iron Oxide Nanoparticles for Lead Removal from Aqueous Solutions. Key Engineering Materials, 0, 805, 122-127.	0.4	26
25	Potential electromagnetic column treatment of heavy metal contaminated water using porous Gd2O3-doped graphene oxide nanocomposite: Characterization and surface interaction mechanisms. Journal of Water Process Engineering, 2021, 41, 102083.	5.6	25
26	Removal of U(VI) by sugar-based magnetic pseudo–graphene oxide and its application to authentic groundwater using electromagnetic system. Environmental Science and Pollution Research, 2019, 26, 22323-22337.	5.3	21
27	Biopolymer mixture-entrapped modified graphene oxide for sustainable treatment of heavy metal contaminated real surface water. Journal of Water Process Engineering, 2022, 46, 102631.	5.6	20
28	Factors affect on bioremediation of Co(II) and Pb(II) onto <i>Lonicera japonica</i> flowers powder. Desalination and Water Treatment, 2016, 57, 13066-13080.	1.0	18
29	Portable SA/CMC entrapped bimetallic magnetic fly ash zeolite spheres for heavy metals contaminated industrial effluents treatment via batch and column studies. Scientific Reports, 2022, 12, 3430.	3.3	18
30	Effective adsorptive removal of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine by pseudographitic carbon: kinetics, equilibrium and thermodynamics. Environmental Chemistry, 2018, 15, 100.	1.5	15
31	Encapsulated zerovalent iron/nickel-fly ash zeolite foam for treating industrial wastewater contaminated by heavy metals. Materials Today Chemistry, 2021, 22, 100577.	3.5	14
32	Polyvinyl Alcohol Polymer Functionalized Graphene Oxide Decorated with Gadolinium Oxide for Sequestration of Radionuclides from Aqueous Medium: Characterization, Mechanism, and Environmental Feasibility Studies. Polymers, 2021, 13, 3835.	4.5	13
33	Facile synthesis of lanthanum hydroxide doped graphene oxide for scavenged of radioactive and heavy elements from water. Synthetic Metals, 2021, 273, 116691.	3.9	10
34	Evaluation of surface phenomena of magnetic biomass for dye removal via surface modeling. Journal of Environmental Chemical Engineering, 2021, 9, 105953.	6.7	9
35	Adsorptive Removal of Selected Anionic and Cationic Dyes by Using Graphitic Carbon Material Prepared from Edible Sugar: A Study of Kinetics and Isotherms. Acta Chimica Slovenica, 2018, 65, 599-610.	0.6	8
36	Effect of pH values on recovery of nano particles (NPs) from the fine fraction of automobile shredder residue (ASR): An application of NPs for phenol removal from the water. Chemical Engineering Research and Design, 2017, 105, 51-59.	5.6	6

#	Article	IF	CITATIONS
37	Facile Synthesis, Characterization, and Adsorption Insights of Lanthanum Oxide Nanorods. Metals, 2020, 10, 1001.	2.3	6
38	Green Activated Magnetic Graphitic Carbon Oxide and Its Application for Hazardous Water Pollutants Removal. Metals, 2019, 9, 935.	2.3	5
39	Recent Strategies on Adsorptive Removal of Precious Metals and Rare Earths Using Low-Cost Natural Adsorbents., 2020,, 87-109.		5
40	Degradation and Mechanism of Methyl Orange by Nanometallic Particles Under a Fenton-Like Process. Environmental Engineering Science, 2017, 34, 350-356.	1.6	4
41	Enhanced Extraction and Separation of Zr(IV) and Hf(IV) from Acidic Chloride Solutions Using 4-Sebacoylbis(1-phenyl-3-methyl-5-pyrazolone) in Presence of Crown Ethers. Asian Journal of Chemistry, 2014, 26, 6885-6890.	0.3	0