Heechul Jung

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/434999/heechul-jung-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18	544	12	18
papers	citations	h-index	g-index
18	638 ext. citations	9.4	3.77
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
18	Interplay between electrochemical reactions and mechanical responses in silicon-graphite anodes and its impact on degradation. <i>Nature Communications</i> , 2021 , 12, 2714	17.4	16
17	A comparative study of reaction mechanism of MoS2 negative electrode materials for sodium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2021 , 876, 160182	5.7	
16	Si-based composite interconnected by multiple matrices for high-performance Li-ion battery anodes. <i>Chemical Engineering Journal</i> , 2020 , 381, 122619	14.7	24
15	Structure- and porosity-tunable, thermally reactive metal organic frameworks for high-performance Ni-rich layered oxide cathode materials with multi-scale pores. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15190-15197	13	6
14	Nanostructured Si-FeSi2-Graphite-C Composite: An Optimized and Practical Solution for Si-Based Anodes for Superior Li-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A2221-A2229	3.9	9
13	Sn-Based Nanocomposite for Li-Ion Battery Anode with High Energy Density, Rate Capability, and Reversibility. <i>ACS Nano</i> , 2018 , 12, 2955-2967	16.7	78
12	Nanoscale electrical resistance imaging of solid electrolyte interphases in lithium-ion battery anodes. <i>Journal of Power Sources</i> , 2018 , 407, 1-5	8.9	10
11	Nanoscale Electrical Degradation of Silicon-Carbon Composite Anode Materials for Lithium-Ion Batteries. <i>ACS Applied Materials & ACS Applied & ACS Applied Materials & ACS Applied & A</i>	9.5	30
10	Verification of Delayed Permanent Lithium Intercalation into Graphite Interlayers by Surface Treatment of Lithium-Ion Battery Anodes. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A2290-A22	9 4 :9	4
9	Protective Oxide Coating for Ionic Conductive Solid Electrolyte Interphase. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 30980-30984	9.5	6
8	Silicon/Carbon Nanotube/BaTiO[Nanocomposite Anode: Evidence for Enhanced Lithium-Ion Mobility Induced by the Local Piezoelectric Potential. <i>ACS Nano</i> , 2016 , 10, 2617-27	16.7	52
7	Facile method to improve initial reversible capacity of hollow carbon nanofiber anodes. <i>European Polymer Journal</i> , 2015 , 70, 392-399	5.2	13
6	Novel multi-layered 1-D nanostructure exhibiting the theoretical capacity of silicon for a super-enhanced lithium-ion battery. <i>Nanoscale</i> , 2014 , 6, 5989-98	7.7	42
5	Nanosize Si anode embedded in super-elastic nitinol (NiIIi) shape memory alloy matrix for Li rechargeable batteries. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11213		69
4	Bismuth sulfide and its carbon nanocomposite for rechargeable lithium-ion batteries. <i>Electrochimica Acta</i> , 2011 , 56, 2135-2139	6.7	71
3	Improvement of electrochemical behavior of Sn2Fe/C nanocomposite anode with Al2O3 addition for lithium-ion batteries. <i>Journal of Power Sources</i> , 2010 , 195, 5044-5048	8.9	20
2	Electrochemical Behaviors and Reaction Mechanism of Nanosilver with Lithium. <i>Electrochemical and Solid-State Letters</i> , 2009 , 12, A171		37

Nanostructured Sn/TiO2/C composite as a high-performance anode for Li-ion batteries. Electrochemistry Communications, **2009**, 11, 2165-2168

5.1 57