
## Dominik CinÄić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4349893/publications.pdf Version: 2024-02-01



DOMINIK CINÄJÄT

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Isostructural Materials Achieved by Using Structurally Equivalent Donors and Acceptors in<br>Halogenâ€Bonded Cocrystals. Chemistry - A European Journal, 2008, 14, 747-753.                                                     | 1.7 | 236       |
| 2  | A Stepwise Mechanism for the Mechanochemical Synthesis of Halogen-Bonded Cocrystal Architectures. Journal of the American Chemical Society, 2008, 130, 7524-7525.                                                               | 6.6 | 184       |
| 3  | Schiff bases derived from hydroxyaryl aldehydes: molecular and crystal structure, tautomerism,<br>quinoid effect, coordination compounds. Macedonian Journal of Chemistry and Chemical Engineering,<br>2013, 29, 117.           | 0.2 | 99        |
| 4  | Structural Equivalence of Br and I Halogen Bonds: A Route to Isostructural Materials with<br>Controllable Properties. Chemistry of Materials, 2008, 20, 6623-6626.                                                              | 3.2 | 95        |
| 5  | Experimental and database studies of three-centered halogen bonds with bifurcated acceptors present in molecular crystals, cocrystals and salts. CrystEngComm, 2011, 13, 3224.                                                  | 1.3 | 85        |
| 6  | Halogen-bonded cocrystallization with phosphorus, arsenic and antimony acceptors. Nature<br>Communications, 2019, 10, 61.                                                                                                       | 5.8 | 78        |
| 7  | A cocrystallisation-based strategy to construct isostructural solids. New Journal of Chemistry, 2008, 32, 1776.                                                                                                                 | 1.4 | 77        |
| 8  | Halogen and Hydrogen Bonding between ( <i>N</i> â€Halogeno)â€succinimides and Pyridine Derivatives in<br>Solution, the Solid State and In Silico. Chemistry - A European Journal, 2017, 23, 5244-5257.                          | 1.7 | 72        |
| 9  | Effect of atmosphere on solid-state amine–aldehyde condensations: gas-phase catalysts for solid-state<br>transformations. Chemical Communications, 2012, 48, 11683.                                                             | 2.2 | 64        |
| 10 | Solvent-Free Polymorphism Control in a Covalent Mechanochemical Reaction. Crystal Growth and Design, 2012, 12, 44-48.                                                                                                           | 1.4 | 63        |
| 11 | Biopharmaceutical characterization of praziquantel cocrystals and cyclodextrin complexes prepared by grinding. Journal of Pharmaceutical and Biomedical Analysis, 2017, 137, 42-53.                                             | 1.4 | 50        |
| 12 | Crystal engineering strategies towards halogen-bonded metal–organic multi-component solids: salts,<br>cocrystals and salt cocrystals. CrystEngComm, 2021, 23, 3063-3083.                                                        | 1.3 | 50        |
| 13 | Competition between Halogen Bonds in Cocrystals of Imines Derived from <i>o</i> -Vanillin. Crystal<br>Growth and Design, 2016, 16, 6381-6389.                                                                                   | 1.4 | 43        |
| 14 | Uncommon halogen bond motifs in cocrystals of aromatic amines and 1,4-diiodotetrafluorobenzene.<br>CrystEngComm, 2016, 18, 7425-7429.                                                                                           | 1.3 | 43        |
| 15 | A Large Family of Halogen-Bonded Cocrystals Involving Metal–Organic Building Blocks with Open<br>Coordination Sites. Crystal Growth and Design, 2017, 17, 6169-6173.                                                            | 1.4 | 42        |
| 16 | Comparison of isomeric <i>meta</i> - and <i>para</i> -diiodotetrafluorobenzene as halogen bond<br>donors in crystal engineering. New Journal of Chemistry, 2018, 42, 10584-10591.                                               | 1.4 | 42        |
| 17 | Synthesis of an extended halogen-bonded metal–organic structure in a one-pot mechanochemical reaction that combines covalent bonding, coordination chemistry and supramolecular synthesis. CrystEngComm, 2014, 16, 10169-10172. | 1.3 | 41        |
| 18 | A Crystallographic Charge Density Study of the Partial Covalent Nature of Strong Nâ‹â‹â‹Br Halogen<br>Bonds. Angewandte Chemie - International Edition, 2019, 58, 15702-15706.                                                  | 7.2 | 41        |

**Ο**ΟΜΙΝΙΚ CINÄ**+**ć

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Schiff base derived from 2-hydroxy-1-naphthaldehyde and liquid-assisted mechanochemical synthesis<br>of its isostructural Cu( <scp>ii</scp> ) and Co( <scp>ii</scp> ) complexes. CrystEngComm, 2011, 13,<br>4351-4357.                 | 1.3 | 38        |
| 20 | Synthesis, Crystal Structure Determination and Antiproliferative Evaluation of Novel Benzazoyl<br>Benzamides. Heterocycles, 2006, 68, 2285.                                                                                            | 0.4 | 34        |
| 21 | New insight into solid-state molecular dynamics: mechanochemical synthesis of<br>azobenzene/triphenylphosphine palladacycles. Chemical Communications, 2011, 47, 11543.                                                                | 2.2 | 32        |
| 22 | The halogen bonding proclivity of the ortho-methoxy–hydroxy group in cocrystals of o-vanillin<br>imines and diiodotetrafluoro-benzenes. CrystEngComm, 2017, 19, 5576-5582.                                                             | 1.3 | 32        |
| 23 | Halogen bonding of the aldehyde oxygen atom in cocrystals of aromatic aldehydes and 1,4-diiodotetrafluorobenzene. CrystEngComm, 2019, 21, 3251-3255.                                                                                   | 1.3 | 30        |
| 24 | Bifurcated and Monocentric Halogen Bonds in Cocrystals of Metal(II) Acetylacetonates with p-Dihalotetrafluorobenzenes. Crystal Growth and Design, 2019, 19, 1245-1256.                                                                 | 1.4 | 30        |
| 25 | Halogen bonded cocrystals of active pharmaceutical ingredients: pyrazinamide, lidocaine and pentoxifylline in combination with haloperfluorinated compounds. CrystEngComm, 2017, 19, 5293-5299.                                        | 1.3 | 29        |
| 26 | Aging and Ball-Milling as Low-Energy and Environmentally Friendly Methods for the Synthesis of Pd(II)<br>Photosensitizers. Organometallics, 2014, 33, 1227-1234.                                                                       | 1.1 | 27        |
| 27 | Halogen bonding of <i>N</i> -bromosuccinimide by grinding. CrystEngComm, 2016, 18, 3343-3346.                                                                                                                                          | 1.3 | 26        |
| 28 | Playing with Isomerism: Cocrystallization of Isomeric <i>N</i> -Salicylideneaminopyridines with<br>Perfluorinated Compounds as Halogen Bond Donors and Its Impact on Photochromism. Crystal<br>Growth and Design, 2018, 18, 6833-6842. | 1.4 | 25        |
| 29 | Simple design for metal-based halogen-bonded cocrystals utilizing the M–Clâ<1 motif. CrystEngComm, 2018, 20, 5955-5963.                                                                                                                | 1.3 | 25        |
| 30 | Polymorphism control in the mechanochemical and solution-based synthesis of a thermochromic Schiff base. CrystEngComm, 2015, 17, 7870-7877.                                                                                            | 1.3 | 24        |
| 31 | Controlling Solvate Formation of a Schiff Base by Combining Mechano-chemistry with Solution Synthesis. Croatica Chemica Acta, 2012, 85, 485-493.                                                                                       | 0.1 | 23        |
| 32 | Halogen Bonding of <i>N</i> -Bromophthalimide by Grinding and Solution Crystallization. Crystal<br>Growth and Design, 2018, 18, 1182-1190.                                                                                             | 1.4 | 21        |
| 33 | Cyclodextrin encapsulation of daidzein and genistein by grinding: implication on the<br>glycosaminoglycan accumulation in mucopolysaccharidosis type II and III fibroblasts. Journal of<br>Microencapsulation, 2018, 35, 1-12.         | 1.2 | 20        |
| 34 | Experimental and Theoretical Investigation of Structures, Stoichiometric Diversity, and Bench<br>Stability of Cocrystals with a Volatile Halogen Bond Donor. Crystal Growth and Design, 2018, 18,<br>2387-2396.                        | 1.4 | 19        |
| 35 | Mechanochemical reactions of cocrystals: comparing theory with experiment in the making and breaking of halogen bonds in the solid state. Chemical Communications, 2020, 56, 8293-8296.                                                | 2.2 | 18        |
| 36 | Halogen-bonded cocrystals of <i>N</i> -salicylidene Schiff bases and iodoperfluorinated benzenes:<br>hydroxyl oxygen as a halogen bond acceptor. CrystEngComm, 2018, 20, 5332-5339.                                                    | 1.3 | 17        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Synthesis of novel molybdenum(V) complexes: Structural characterization of two<br>thiosemicarbazonato complexes [MoOCl2{C6H4(O)CH:NNHC:SNHC6H5}] and<br>[MoOCl2{C10H6(O)CH:NNHC:SNHC6H5}]·CH3CN, and two oxohalomolybdates NH4[MoOCl4(CH3CN)]<br>and [C5H5NH]2[MoOCl5]·CH2Cl2. Polyhedron, 2007, 26, 3363-3372.                                                              | 1.0 | 16        |
| 38 | Three routes to nickel(ii) salicylaldehyde 4-phenyl and 4-methylthiosemicarbazonato complexes:<br>mechanochemical, electrochemical and conventional approach. CrystEngComm, 2012, 14, 3039.                                                                                                                                                                                  | 1.3 | 16        |
| 39 | Synthesis, characterization, crystal structure and predicting the second-order optical nonlinearity of a new dicobalt(III) complex with Schiff base ligand. Journal of Molecular Structure, 2015, 1083, 82-87.                                                                                                                                                               | 1.8 | 16        |
| 40 | The Morpholinyl Oxygen Atom as an Acceptor Site for Halogen-Bonded Cocrystallization of Organic<br>and Metal–Organic Units. Crystal Growth and Design, 2020, 20, 3617-3624.                                                                                                                                                                                                  | 1.4 | 14        |
| 41 | Anticooperativity of Multiple Halogen Bonds and Its Effect on Stoichiometry of Cocrystals of<br>Perfluorinated Iodobenzenes. Crystal Growth and Design, 2022, 22, 2644-2653.                                                                                                                                                                                                 | 1.4 | 14        |
| 42 | Cocrystal trimorphism as a consequence of the orthogonality of halogen- and hydrogen-bonds synthons. Chemical Communications, 2019, 55, 14066-14069.                                                                                                                                                                                                                         | 2.2 | 13        |
| 43 | The Amine Group as Halogen Bond Acceptor in Cocrystals of Aromatic Diamines and Perfluorinated Iodobenzenes. Crystals, 2021, 11, 529.                                                                                                                                                                                                                                        | 1.0 | 13        |
| 44 | Conservation of the Hydrogen-Bonded Pyridone Homosynthon in Halogen-Bonded Cocrystals. Crystal<br>Growth and Design, 2022, 22, 987-992.                                                                                                                                                                                                                                      | 1.4 | 13        |
| 45 | The Influence of Liquid on the Outcome of Halogen-Bonded Metal–Organic Materials Synthesis by<br>Liquid Assisted Grinding. Crystals, 2017, 7, 363.                                                                                                                                                                                                                           | 1.0 | 11        |
| 46 | A Crystallographic Charge Density Study of the Partial Covalent Nature of Strong Nâ‹â‹â‹Br Halogen<br>Bonds. Angewandte Chemie, 2019, 131, 15849-15853.                                                                                                                                                                                                                      | 1.6 | 11        |
| 47 | Halogen and Hydrogen Bond Motifs in Ionic Cocrystals Derived from 3-Halopyridinium Halogenides and Perfluorinated Iodobenzenes. Crystal Growth and Design, 2021, 21, 6044-6050.                                                                                                                                                                                              | 1.4 | 11        |
| 48 | Correlation between structural, physical and chemical properties of three new tetranuclear<br>Ni <sup>II</sup> clusters. New Journal of Chemistry, 2016, 40, 6604-6614.                                                                                                                                                                                                      | 1.4 | 10        |
| 49 | Inorganic bromine in organic molecular crystals: Database survey and four case studies. Journal of<br>Molecular Structure, 2017, 1128, 400-409.                                                                                                                                                                                                                              | 1.8 | 10        |
| 50 | Halogen-bonded cocrystals of donepezil with perfluorinated diiodobenzenes. CrystEngComm, 2020,<br>22, 5573-5577.                                                                                                                                                                                                                                                             | 1.3 | 10        |
| 51 | A coloring tool for spiropyrans: solid state metal–organic complexation versus salification.<br>CrystEngComm, 2019, 21, 4925-4933.                                                                                                                                                                                                                                           | 1.3 | 9         |
| 52 | The Synthesis and Structure of Two Novel N-(Benzothiazol-2-yl)benzamides. Journal of Chemical<br>Crystallography, 2008, 38, 775-780.                                                                                                                                                                                                                                         | 0.5 | 8         |
| 53 | Strong decouping between magnetic subsystems in the low-dimensional spin- <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mfrac><mml:mn>1</mml:mn><mml:mn>2antiferromagnet <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:msub><mml:mi>SeCuO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math<br></mml:mn></mml:mfrac></mml:math<br> | 1.1 | 8         |
| 54 | Physical Review B, 2019, 99, .<br>Tautomeric Equilibrium of an Asymmetric β-Diketone in Halogen-Bonded Cocrystals with<br>Perfluorinated Iodobenzenes. Crystals, 2021, 11, 699.                                                                                                                                                                                              | 1.0 | 7         |

4

**Ο**ΟΜΙΝΙΚ CINÄ**ł**ć

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Mechanochemical and solution-based cocrystallization of 9,10-phenanthrenequinone and thiourea.<br>CrystEngComm, 2015, 17, 6274-6277.                                                                                  | 1.3 | 6         |
| 56 | Co-grinding with surfactants as a new approach to enhance in vitro dissolution of praziquantel.<br>Journal of Pharmaceutical and Biomedical Analysis, 2020, 189, 113494.                                              | 1.4 | 6         |
| 57 | Halogen-Bonded Cocrystals of 1,3,5-Triiodo-2,4,6-trifluorobenzene and Structural Isomers of Benzoylpyridine. Crystal Growth and Design, 2022, 22, 3981-3989.                                                          | 1.4 | 6         |
| 58 | Exploring the Halogen-Bonded Cocrystallization Potential of a Metal-Organic Unit Derived from Copper(ii) Chloride and 4-Aminoacetophenone. Materials, 2020, 13, 2385.                                                 | 1.3 | 5         |
| 59 | Cobaloximes as Building Blocks in Halogen-Bonded Cocrystals. Materials, 2020, 13, 2370.                                                                                                                               | 1.3 | 4         |
| 60 | Hydrogen bonding in the bromide salts of 4-aminobenzoic acid and 4-aminoacetophenone. Acta<br>Crystallographica Section C: Crystal Structure Communications, 2008, 64, o226-o229.                                     | 0.4 | 2         |
| 61 | Halogen and Hydrogen Bonding between (N -Halogeno)-succinimides and Pyridine Derivatives in Solution, the Solid State and in Silico. Chemistry - A European Journal, 2017, 23, 5175-5175.                             | 1.7 | 2         |
| 62 | Influence of intramolecular hydrogen bonding on structures and thermal stability of Cu(II) and Zn(II)<br>β-diketonate adducts. Journal of Molecular Structure, 2021, 1246, 131130.                                    | 1.8 | 2         |
| 63 | 3-Hydroxyanilinium bromide. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3873-o3873.                                                                                                        | 0.2 | 1         |
| 64 | 4-Acetylanilinium perchlorate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4672-o4672.                                                                                                     | 0.2 | 1         |
| 65 | Hydrogen-bonding motifs in 3-carboxyanilinium bromide and iodide. Acta Crystallographica Section C:<br>Crystal Structure Communications, 2008, 64, o101-o104.                                                         | 0.4 | 1         |
| 66 | 3-Acetylanilinium bromide, nitrate and dihydrogen phosphate: hydrogen-bonding motifs in one, two<br>and three dimensions. Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64,<br>o561-o565. | 0.4 | 1         |
| 67 | Halogenâ€Bonded Co rystals Containing Mono―and Dinuclear Metalâ€Organic Units: Threeâ€Component<br>Oneâ€Pot Mechanosynthesis, Structural Analysis and Magnetic Properties. Chemistry Methods, 0, , .                  | 1.8 | 0         |