
Christian Adlhart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4349885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acrylonitrile and Pullulan Based Nanofiber Mats as Easily Accessible Scaffolds for 3D Skin Cell Models Containing Primary Cells. Cells, 2022, 11, 445.	4.1	2
2	The Separation Power of Highly Porous 3D Nanofiber Sponges. Chimia, 2022, 76, 354.	0.6	0
3	Keeping SARS-CoV-2 out: Vaccines, Filters, and Self-disinfecting Textiles. Chimia, 2021, 75, 215-218.	0.6	1
4	3D PCL/Gelatin/Genipin Nanofiber Sponge as Scaffold for Regenerative Medicine. Materials, 2021, 14, 2006.	2.9	14
5	A Chitosan Nanofiber Sponge for Oyster-Inspired Filtration of Microplastics. ACS Applied Polymer Materials, 2021, 3, 4685-4694.	4.4	22
6	A Novel Microfiber Wipe for Delivery of Active Substances to Human Skin: Clinical Proof of Concept. Polymers, 2020, 12, 2715.	4.5	0
7	Materials Science at Swiss Universities of Applied Sciences. Chimia, 2019, 73, 645.	0.6	1
8	In Vitro Endothelialization of Surface-Integrated Nanofiber Networks for Stretchable Blood Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 5740-5751.	8.0	11
9	Nanofiber immobilized CeO2/dendrimer nanoparticles: An efficient photocatalyst in the visible and the UV. Applied Surface Science, 2019, 479, 608-618.	6.1	34
10	Surface enriched nanofiber mats for efficient adsorption of Cr(VI) inspired by nature. Journal of Environmental Chemical Engineering, 2019, 7, 102817.	6.7	27
11	Exploration of Ultralight Nanofiber Aerogels as Particle Filters: Capacity and Efficiency. ACS Applied Materials & Interfaces, 2018, 10, 9069-9076.	8.0	74
12	Surface modifications for antimicrobial effects in the healthcare setting: a critical overview. Journal of Hospital Infection, 2018, 99, 239-249.	2.9	225
13	Prediction of Steam Burns Severity using Raman Spectroscopy on ex vivo Porcine Skin. Scientific Reports, 2018, 8, 6946.	3.3	17
14	Efficient dye adsorption by highly porous nanofiber aerogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 547, 117-125.	4.7	56
15	The relationship between skin function, barrier properties, and bodyâ€dependent factors. Skin Research and Technology, 2018, 24, 165-174.	1.6	212
16	Merging flexibility with superinsulation: Machinable, nanofibrous pullulan-silica aerogel composites. Materials and Design, 2018, 160, 294-302.	7.0	23
17	Multiparameter toxicity assessment of novel DOPO-derived organophosphorus flame retardants. Archives of Toxicology, 2017, 91, 407-425.	4.2	63
18	Amphiphilic Nanofiberâ€Based Aerogels for Selective Liquid Absorption from Electrospun Biopolymers. Advanced Materials Interfaces, 2017, 4, 1700065.	3.7	60

CHRISTIAN ADLHART

#	Article	IF	CITATIONS
19	Anti-microbial coating innovations to prevent infectious diseases (AMiCI): Cost action ca15114. Bioengineered, 2017, 8, 679-685.	3.2	20
20	Nanofiber-based Aerogels. Chimia, 2017, 71, 311-311.	0.6	1
21	From Short Electrospun Nanofibers to Ultralight Aerogels with Tunable Pore Structure. Chimia, 2017, 71, 236.	0.6	25
22	<i>In vivo</i> confirmation of hydration-induced changes in human-skin thickness, roughness and interaction with the environment. Biointerphases, 2016, 11, 031015.	1.6	46
23	Tailoring Pore Structure of Ultralight Electrospun Sponges by Solid Templating. ChemistrySelect, 2016, 1, 5595-5598.	1.5	40
24	Surfactant-free synthesis of sub-100 nm poly(styrene-co-divinylbenzene) nanoparticles by one-step ultrasonic assisted emulsification/polymerization. RSC Advances, 2015, 5, 103218-103228.	3.6	13
25	Skin Concentrations of Topically Applied Substances in Reconstructed Human Epidermis (RHE) Compared with Human Skin Using in vivo Confocal Raman Microscopy. Chimia, 2015, 69, 147.	0.6	20
26	Membrane–particle interactions in an asymmetric flow field flow fractionation channel studied with titanium dioxide nanoparticles. Journal of Chromatography A, 2014, 1334, 92-100.	3.7	44
27	What Happens to the Vitamin E in a Vitamin-Stabilised HXLPE?. , 2014, , 197-205.		Ο
28	Surface Chemistry at Swiss Universities of Applied Sciences. Chimia, 2014, 68, 560.	0.6	0
29	Label free non-invasive imaging of topically applied actives in reconstructed human epidermis by confocal Raman spectroscopy. Vibrational Spectroscopy, 2013, 68, 29-33.	2.2	20
30	Grafting of α-tocopherol upon γ-irradiation in UHMWPE probed by model hydrocarbons. Polymer Degradation and Stability, 2012, 97, 2255-2261.	5.8	14
31	Critical aspects of sample handling for direct nanoparticle analysis and analytical challenges using asymmetric field flow fractionation in a multi-detector approach. Journal of Analytical Atomic Spectrometry, 2012, 27, 1120.	3.0	92
32	Surface distribution and depths profiling of particulate organic UV absorbers by Raman imaging and tape stripping. International Journal of Cosmetic Science, 2011, 33, 527-534.	2.6	14
33	Membranes for Specific Adsorption: Immobilizing Molecularly Imprinted Polymer Microspheres using Electrospun Nanofibers. Chimia, 2011, 65, 182.	0.6	12
34	Mechanisms for the Dehydrogenation of Alkanes on Platinum: Insights Gained from the Reactivity of Gaseous Cluster Cations, Ptn+n=1–21. Chemistry - A European Journal, 2007, 13, 6883-6890.	3.3	50
35	Reaction dynamics simulations of the identity SN2 reaction H2O + HOOH2+→ H2OOH++ H2O. Requirements for reaction and competition with proton transfer. Physical Chemistry Chemical Physics, 2006, 8, 1066.	2.8	7
36	Reactions of platinum clusters Ptn±, n = 1–21, with CH4: to react or not to react. Chemical Communications, 2006, , 2581-2582.	4.1	70

CHRISTIAN ADLHART

#	Article	IF	CITATIONS
37	C–H activation in reactions of protonated hydrogen peroxide with propane. International Journal of Mass Spectrometry, 2006, 254, 189-196.	1.5	2
38	Mechanisms of catalytic dehydrogenation of alkanes by rhodium clusters Rhn+ probed by isotope labelling. International Journal of Mass Spectrometry, 2006, 249-250, 191-198.	1.5	8
39	Unprecedented ROMP Activity of Low-Valent Rhenium–Nitrosyl Complexes: Mechanistic Evaluation of an Electrophilic Olefin Metathesis System. Chemistry - A European Journal, 2006, 12, 3325-3338.	3.3	35
40	On the Gas-Phase Reactivity of Complexed OH+ with Halogenated Alkanes. Chemistry - A European Journal, 2005, 11, 152-159.	3.3	7
41	C–H activation of alkanes on Rhn+ (n=1–30) clusters: Size effects on dehydrogenation. Journal of Chemical Physics, 2005, 123, 214709.	3.0	48
42	Mechanism and Activity of Ruthenium Olefin Metathesis Catalysts:Â The Role of Ligands and Substrates from a Theoretical Perspective. Journal of the American Chemical Society, 2004, 126, 3496-3510.	13.7	272
43	Dissociative recombination cross section and branching ratios of protonated dimethyl disulfide and N-methylacetamide. Journal of Chemical Physics, 2004, 121, 5700-5708.	3.0	21
44	Comparing Intrinsic Reactivities of the First- and Second-Generation Ruthenium Metathesis Catalysts in the Gas Phase. Helvetica Chimica Acta, 2003, 86, 941-949.	1.6	54
45	Die Rotation des Liganden unterscheidet die Ruthenium-Metathesekatalysatoren der ersten und zweiten Generation. Angewandte Chemie, 2002, 114, 4668-4671.	2.0	24
46	Ligand Rotation Distinguishes First- and Second-Generation Ruthenium Metathesis Catalysts. Angewandte Chemie - International Edition, 2002, 41, 4484-4487.	13.8	119
47	Catalyst Screening by Electrospray Ionization Tandem Mass Spectrometry: Hofmann Carbenes for Olefin Metathesis. Chemistry - A European Journal, 2001, 7, 4621-4632.	3.3	82
48	Fishing for Catalysts: Mechanism-Based Probes for Active Species in Solution. Helvetica Chimica Acta, 2000, 83, 2192-2196.	1.6	104
49	ComparingGrubbs-,Werner-, andHofmann-Type (Carbene)ruthenium Complexes: The Key Role of Pre-Equilibria for Olefin Metathesis. Helvetica Chimica Acta, 2000, 83, 3306-3311.	1.6	72
50	Mechanistic Studies of Olefin Metathesis by Ruthenium Carbene Complexes Using Electrospray Ionization Tandem Mass Spectrometry. Journal of the American Chemical Society, 2000, 122, 8204-8214.	13.7	252
51	Olefin Metathesis of a Ruthenium Carbene Complex by Electrospray Ionization in the Gas Phase. Angewandte Chemie - International Edition, 1998, 37, 2685-2689.	13.8	166