Oksana Chubykalo-Fesenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4349869/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detailed examination of domain wall types, their widths and critical diameters in cylindrical magnetic nanowires. Journal of Magnetism and Magnetic Materials, 2022, 542, 168495.	2.3	19
2	Distinguishing Local Demagnetization Contribution to the Magnetization Process in Multisegmented Nanowires. Nanomaterials, 2022, 12, 1968.	4.1	2
3	How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios. Nanoscale, 2021, 13, 15631-15646.	5.6	53
4	Spin-lattice dynamics model with angular momentum transfer for canonical and microcanonical ensembles. Physical Review B, 2021, 103, .	3.2	20
5	Stochastic <i>vs.</i> deterministic magnetic coding in designed cylindrical nanowires for 3D magnetic networks. Nanoscale, 2021, 13, 12587-12593.	5.6	7
6	Magnetic Configurations in Modulated Cylindrical Nanowires. Nanomaterials, 2021, 11, 600.	4.1	29
7	Curvature-induced emergence of a second critical field for domain wall dynamics in bent nanostripes. Applied Physics Letters, 2021, 118, .	3.3	14
8	Field-Dependent Energy Barriers of Magnetic Néel Skyrmions in Ultrathin Circular Nanodots. Physical Review Applied, 2021, 16, .	3.8	4
9	Spontaneous creation and annihilation dynamics of magnetic skyrmions at elevated temperature. Physical Review B, 2021, 104, .	3.2	8
10	Static properties of magnetic skyrmions. , 2021, , 181-231.		2
11	Topologically-mediated energy release by relativistic antiferromagnetic solitons. Physical Review Research, 2021, 3, .	3.6	1
12	The Bloch point 3D topological charge induced by the magnetostatic interaction. Scientific Reports, 2021, 11, 21714.	3.3	15
13	Electric current and field control of vortex structures in cylindrical magnetic nanowires. Physical Review B, 2020, 102, .	3.2	14
14	Unveiling the Origin of Multidomain Structures in Compositionally Modulated Cylindrical Magnetic Nanowires. ACS Nano, 2020, 14, 12819-12827.	14.6	19
15	Opportunities and challenges for spintronics in the microelectronics industry. Nature Electronics, 2020, 3, 446-459.	26.0	471
16	Tuning domain wall dynamics by shaping nanowires cross-sections. Scientific Reports, 2020, 10, 21911.	3.3	11
17	Disentangling local heat contributions in interacting magnetic nanoparticles. Physical Review B, 2020, 102, .	3.2	13
18	Controlling domain wall oscillations in bent cylindrical magnetic wires. Physical Review B, 2020, 101, .	3.2	19

#	Article	IF	CITATIONS
19	Intrinsic Mixed Bloch–Néel Character and Chirality of Skyrmions in Asymmetric Epitaxial Trilayers. ACS Applied Materials & Interfaces, 2020, 12, 25419-25427.	8.0	12
20	Half-hedgehog spin textures in sub-100 nm soft magnetic nanodots. Nanoscale, 2020, 12, 18646-18653.	5.6	15
21	The 2020 magnetism roadmap. Journal Physics D: Applied Physics, 2020, 53, 453001.	2.8	162
22	Landau-Lifshitz-Bloch Approach for Magnetization Dynamics Close to Phase Transition. , 2020, , 867-893.		0
23	Thermodynamics of interacting magnetic nanoparticles. Physical Review B, 2020, 101, .	3.2	15
24	Giant localised spin-Peltier effect due to ultrafast domain wall motion in antiferromagnetic metals. Communications Physics, 2020, 3, .	5.3	9
25	Micromagnetic modeling of magnetic domain walls and domains in cylindrical nanowires. , 2020, , 403-426.		32
26	Controlling Magnetization Reversal and Hyperthermia Efficiency in Core–Shell Iron–Iron Oxide Magnetic Nanoparticles by Tuning the Interphase Coupling. ACS Applied Nano Materials, 2020, 3, 4465-4476.	5.0	42
27	Configurational entropy of magnetic skyrmions as an ideal gas. Physical Review B, 2019, 99, .	3.2	17
28	Role of exchange parameters for ultrafast thermally induced magnetization switching in ferrimagnets. Physical Review B, 2019, 99, .	3.2	10
29	Magnetization pinning in modulated nanowires: from topological protection to the "corkscrew― mechanism. Nanoscale, 2018, 10, 5923-5927.	5.6	51
30	Origin of temperature and field dependence of magnetic skyrmion size in ultrathin nanodots. Physical Review B, 2018, 97, .	3.2	77
31	Anisotropic magnetic nanoparticles for biomedicine: bridging frequency separated AC-field controlled domains of actuation. Physical Chemistry Chemical Physics, 2018, 20, 30445-30454.	2.8	24
32	A Comparative Study of Magnetic Properties of Large Diameter Co Nanowires and Nanotubes. Nanomaterials, 2018, 8, 692.	4.1	28
33	Magnetization Ratchet in Cylindrical Nanowires. ACS Nano, 2018, 12, 5932-5939.	14.6	63
34	Micromagnetic evaluation of the dissipated heat in cylindrical magnetic nanowires. Applied Physics Letters, 2018, 112, .	3.3	15
35	Distinct magnetic field dependence of Néel skyrmion sizes in ultrathin nanodots. Scientific Reports, 2018, 8, 6280.	3.3	34
36	Magnetic skyrmion size and stability in ultrathin nanodots accounting Dzyaloshinskii-Moriya exchange interaction. Journal of Magnetism and Magnetic Materials, 2018, 465, 471-479.	2.3	19

#	Article	IF	CITATIONS
37	Magnetic hardening and domain structure in Co/Pt antidots with perpendicular anisotropy. Journal Physics D: Applied Physics, 2017, 50, 065003.	2.8	10
38	Chaotic dynamics of a magnetic particle at finite temperature. Physical Review B, 2017, 95, .	3.2	7
39	Co/Au multisegmented nanowires: a 3D array of magnetostatically coupled nanopillars. Nanotechnology, 2017, 28, 095709.	2.6	32
40	Modeling of effective anisotropies in FeCo and Co nanowires. , 2017, , .		1
41	Direct observation of transverse and vortex metastable magnetic domains in cylindrical nanowires. Physical Review B, 2017, 96, .	3.2	29
42	Multisegmented Nanowires: a Step towards the Control of the Domain Wall Configuration. Scientific Reports, 2017, 7, 11576.	3.3	48
43	Effective anisotropies in magnetic nanowires using the torque method. Journal of Magnetism and Magnetic Materials, 2017, 443, 378-384.	2.3	3
44	Oscillatory behavior of the domain wall dynamics in a curved cylindrical magnetic nanowire. Physical Review B, 2017, 96, .	3.2	25
45	Conditions for thermally induced all-optical switching in ferrimagnetic alloys: Modeling of TbCo. Physical Review B, 2017, 96, .	3.2	39
46	Magnetisation switching of FePt nanoparticle recording medium by femtosecond laser pulses. Scientific Reports, 2017, 7, 4114.	3.3	94
47	In-situ particles reorientation during magnetic hyperthermia application: Shape matters twice. Scientific Reports, 2016, 6, 38382.	3.3	92
48	Single crystalline cylindrical nanowires – toward dense 3D arrays of magnetic vortices. Scientific Reports, 2016, 6, 23844.	3.3	45
49	Temperature-dependent exchange stiffness and domain wall width in Co. Physical Review B, 2016, 94, .	3.2	86
50	Distinguishing between heating power and hyperthermic cell-treatment efficacy in magnetic fluid hyperthermia. Soft Matter, 2016, 12, 8815-8818.	2.7	13
51	Modeling of Ultrafast Heat- and Field-Assisted Magnetization Dynamics in FePt. Physical Review Applied, 2016, 5, .	3.8	35
52	Field-dependent energy barriers in Co/CoO core-shell nanoparticles. Physical Review B, 2016, 93, .	3.2	6
53	Self-consistent description of spin-phonon dynamics in ferromagnets. Physical Review B, 2016, 94,	3.2	10
54	Optimising materials for energy-efficient all-optical magnetic switching. , 2015, , .		0

Optimising materials for energy-efficient all-optical magnetic switching. , 2015, , . 54

Oksana Chubykalo-Fesenko

#	Article	IF	CITATIONS
55	Shape-dependent exchange bias effect in magnetic nanoparticles with core-shell morphology. Physical Review B, 2015, 92, .	3.2	39
56	Multiscale modeling of ultrafast element-specific magnetization dynamics of ferromagnetic alloys. Physical Review B, 2015, 92, .	3.2	40
57	Ultrafast relaxation rates and reversal time in disordered ferrimagnets. Physical Review B, 2015, 92, .	3.2	13
58	The Landau–Lifshitz equation in atomistic models. Low Temperature Physics, 2015, 41, 705-712.	0.6	44
59	The classical two-sublattice Landau–Lifshitz–Bloch equation for all temperatures. Low Temperature Physics, 2015, 41, 739-744.	0.6	15
60	Optimal electron, phonon, and magnetic characteristics for low energy thermally induced magnetization switching. Applied Physics Letters, 2015, 107, .	3.3	29
61	A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 15698-15706.	3.1	141
62	Multiscale modeling of ultrafast element-specific magnetization dynamics in FeNi ferromagnetic alloys. , 2015, , .		0
63	Energy efficient thermally induced magnetization switching by tailoring the electron and phonon dynamics. , 2015, , .		0
64	Micromagnetic simulations of cylindrical magnetic nanowires. , 2015, , 423-448.		12
65	The role of size polydispersity in magnetic fluid hyperthermia: average vs. local infra/over-heating effects. Physical Chemistry Chemical Physics, 2015, 17, 27812-27820.	2.8	30
66	Extraordinary exchange-bias effects in coupled SmCo <inf>5</inf> (perpendicular)/CoFeB (in-plane) bilayers. , 2015, , .		0
67	Novel micromagnetics for high-temperature applications and modeling of ultra-fast laser-induced magnetization dynamics. , 2015, , .		0
68	The Landau-Lifshitz-Bloch Equation for Quantum Spin. Springer Proceedings in Physics, 2015, , 140-142.	0.2	0
69	Controlling the polarity of the transient ferromagneticlike state in ferrimagnets. Physical Review B, 2014, 89, .	3.2	40
70	Quantum Landau-Lifshitz-Bloch equation and its comparison with the classical case. Physical Review B, 2014, 90, .	3.2	37
71	Crystallographically driven magnetic behaviour of arrays of monocrystalline Co nanowires. Nanotechnology, 2014, 25, 475702.	2.6	51
72	Micromagnetism of permalloy antidot arrays prepared from alumina templates. Nanotechnology, 2014, 25, 475703.	2.6	11

#	Article	IF	CITATIONS
73	Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling. Journal of Physical Chemistry C, 2014, 118, 5927-5934.	3.1	230
74	Magnetic antidot to dot crossover in Co and Py nanopatterned thin films. Physical Review B, 2014, 89, .	3.2	35
75	Vortex magnetic structure in circularly magnetized microwires as deduced from magneto-optical Kerr measurements. Journal of Applied Physics, 2014, 115, .	2.5	10
76	Resolving the role of femtosecond heated electrons in ultrafast spin dynamics. Scientific Reports, 2014, 4, 3980.	3.3	100
77	Tuning the magnetization reversal process of FeCoCu nanowire arrays by thermal annealing. Journal of Applied Physics, 2013, 114, .	2.5	45
78	Magnetic structure of a single-crystal hcp electrodeposited cobalt nanowire. Europhysics Letters, 2013, 102, 17009.	2.0	45
79	Structural Dependence of Magnetic Properties in Co-Based Nanowires: Experiments and Micromagnetic Simulations. IEEE Transactions on Magnetics, 2013, 49, 4491-4497.	2.1	29
80	Surface and interface effects in magnetic core–shell nanoparticles. MRS Bulletin, 2013, 38, 909-914.	3.5	26
81	Magnetic reversal modes in cylindrical nanowires. Journal Physics D: Applied Physics, 2013, 46, 485001.	2.8	126
82	Magnetic properties of Co nanopillar arrays prepared from alumina templates. Nanotechnology, 2013, 24, 105703.	2.6	76
83	Magnetic configurations of Co(111) nanostripes with competing shape and crystalline anisotropies. Physical Review B, 2013, 87, .	3.2	11
84	Ultrafast dynamical path for the switching of a ferrimagnet after femtosecond heating. Physical Review B, 2013, 87, .	3.2	57
85	Two-magnon bound state causes ultrafast thermally induced magnetisation switching. Scientific Reports, 2013, 3, 3262.	3.3	87
86	Temperature dependence of the frequencies and effective damping parameters of ferrimagnetic resonance. Physical Review B, 2012, 86, .	3.2	33
87	Micromagnetism of dense permalloy antidot lattices from anodic alumina templates. Europhysics Letters, 2012, 100, 17007.	2.0	10
88	Unified decoupling scheme for exchange and anisotropy contributions and temperature-dependent spectral properties of anisotropic spin systems. Physical Review B, 2012, 86, .	3.2	21
89	Key role of temperature in ferromagnetic Bloch point simulations. Physical Review B, 2012, 86, .	3.2	27
90	Stochastic form of the Landau-Lifshitz-Bloch equation. Physical Review B, 2012, 85, .	3.2	157

#	Article	IF	CITATIONS
91	Landau-Lifshitz-Bloch equation for ferrimagnetic materials. Physical Review B, 2012, 86, .	3.2	80
92	Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nature Communications, 2012, 3, 666.	12.8	588
93	Electron- and phonon-mediated ultrafast magnetization dynamics of Gd(0001). Physical Review B, 2012, 85, .	3.2	56
94	Magnetic Capsules for NMR Imaging: Effect of Magnetic Nanoparticles Spatial Distribution and Aggregation. Journal of Physical Chemistry C, 2011, 115, 6257-6264.	3.1	83
95	Influence of interfacial roughness on exchange bias in core-shell nanoparticles. Physical Review B, 2011, 84, .	3.2	56
96	Coercivity of ordered arrays of magnetic Co nanowires with controlled variable lengths. Applied Physics Letters, 2011, 98, .	3.3	42
97	Ultrafast magnetization dynamics rates within the Landau-Lifshitz-Bloch model. Physical Review B, 2011, 84, .	3.2	90
98	Crystallographically amorphous ferrimagnetic alloys: Comparing a localized atomistic spin model with experiments. Physical Review B, 2011, 84, .	3.2	130
99	Interface and Temperature Dependent Magnetic Properties in Permalloy Thin Films and Tunnel Junction Structures. Journal of Nanoscience and Nanotechnology, 2011, 11, 7653-7664.	0.9	14
100	Slow magnetization dynamics and energy barriers near vortex state nucleation in circular permalloy dots. Applied Physics Letters, 2011, 99, .	3.3	13
101	Control of the chirality and polarity of magnetic vortices in triangular nanodots. Physical Review B, 2010, 81, .	3.2	87
102	Multiscale modeling of magnetic materials: Temperature dependence of the exchange stiffness. Physical Review B, 2010, 82, .	3.2	95
103	Nonlinear gyrotropic vortex dynamics in ferromagnetic dots. Physical Review B, 2010, 82, .	3.2	45
104	Damping dependence of the reversal time of the magnetization of single-domain ferromagnetic particles for the Néel-Brown model: Langevin dynamics simulations versus analytic results. Physical Review B, 2010, 82, .	3.2	20
105	Constrained Monte Carlo method and calculation of the temperature dependence of magnetic anisotropy. Physical Review B, 2010, 82, .	3.2	130
106	Evidence for thermal mechanisms in laser-induced femtosecond spin dynamics. Physical Review B, 2010, 81, .	3.2	139
107	Temperature dependence of the effective anisotropies in magnetic nanoparticles with Néel surface anisotropy. Journal Physics D: Applied Physics, 2010, 43, 474009.	2.8	29
108	Modeling of microwave-assisted switching in micron-sized magnetic ellipsoids. Physical Review B, 2009, 79, .	3.2	13

#	Article	IF	CITATIONS
109	Magnetization Reversal in Exchange-Coupled Composite Media—Experiment and Modeling. IEEE Transactions on Magnetics, 2009, 45, 856-861.	2.1	4
110	Coercive field and energy barriers in partially disordered FePt nanoparticles. Journal of Applied Physics, 2009, 105, 07B514.	2.5	5
111	Modelling of the influence of the Néel surface anisotropy on the enhancement of the magnetic anisotropy in Co nanoparticle. Journal Physics D: Applied Physics, 2009, 42, 055013.	2.8	7
112	On beating the superparamagnetic limit with exchange bias. Europhysics Letters, 2009, 88, 57004.	2.0	33
113	Ultrafast Spin Dynamics: The Effect of Colored Noise. Physical Review Letters, 2009, 102, 057203.	7.8	72
114	Hysteresis in Fe particles with surface and magnetoelastic anisotropies: Experiment and micromagnetic modeling. Physica B: Condensed Matter, 2008, 403, 469-472.	2.7	2
115	Numerical evaluation of energy barriers in nano-sized magnetic elements with Lagrange multiplier technique. Physica B: Condensed Matter, 2008, 403, 330-333.	2.7	12
116	Field induced vortex dynamics in magnetic Ni nanotriangles. Nanotechnology, 2008, 19, 285717.	2.6	36
117	Switching and thermal stability properties of bilayer thin films: Single versus multigrain cases. Journal of Applied Physics, 2008, 103, 07F505.	2.5	11
118	Thermal coercivity mechanism in Fe nanoribbons and stripes. Applied Physics Letters, 2008, 93, 192508.	3.3	4
119	Towards multiscale modeling of magnetic materials: Simulations of FePt. Physical Review B, 2008, 77, .	3.2	188
120	Nanomagnetism. Journal of Nanoscience and Nanotechnology, 2008, 8, 2729-2730.	0.9	0
121	Coercivity mechanisms in lithographed antidot arrays. Europhysics Letters, 2008, 84, 67002.	2.0	16
122	Micromagnetic modeling of laser-induced magnetization dynamics using the Landau-Lifshitz-Bloch equation. Applied Physics Letters, 2007, 91, .	3.3	114
123	Effective anisotropies and energy barriers of magnetic nanoparticles with Néel surface anisotropy. Physical Review B, 2007, 76, .	3.2	122
124	Atomistic models of ultrafast reversal. Physica Status Solidi (B): Basic Research, 2007, 244, 4389-4393.	1.5	9
125	Effects of surface anisotropy on the energy barrier in cobalt–silver core–shell nanoparticles. Journal of Magnetism and Magnetic Materials, 2007, 316, e791-e794.	2.3	15
126	The Effects of Surface Coating on the Structural and Magnetic Properties of CoAg Core-Shell Nanoparticles. IEEE Transactions on Magnetics, 2007, 43, 3106-3108.	2.1	8

#	Article	IF	CITATIONS
127	Dynamic approach for micromagnetics close to the Curie temperature. Physical Review B, 2006, 74, .	3.2	157
128	Atomistic Models of Interfacial Effects in Exchange-Coupled Composite Media. , 2006, , .		0
129	Experimental and computational analysis of the angular dependence of the hysteresis processes in an antidots array. Journal of Applied Physics, 2006, 99, 08S503.	2.5	7
130	A computational and experimental study of exchange coupling in FePt self-organized magnetic arrays. Physica B: Condensed Matter, 2006, 382, 235-244.	2.7	7
131	Multiscale modelling of hysteresis in FePt/FeRh bilayer. Physica B: Condensed Matter, 2006, 372, 328-331.	2.7	14
132	Multiscale models of hard-soft composite media. Journal of Magnetism and Magnetic Materials, 2006, 303, 282-286.	2.3	9
133	NONLINEAR ADIABATIC DYNAMICS OF SMALL FERROMAGNETIC PARTICLES. International Journal of Modern Physics B, 2006, 20, 5391-5404.	2.0	3
134	A micromagnetic study of the hysteretic behavior of antidot Fe films. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 149-152.	2.3	17
135	Magnetization reversal in textured Fe nanoparticles having different aspect ratios. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 479-481.	2.3	1
136	Moving toward an atomistic reader model. IEEE Transactions on Magnetics, 2005, 41, 936-940.	2.1	12
137	Modeling of long-time thermal magnetization decay in interacting granular magnetic materials. IEEE Transactions on Magnetics, 2005, 41, 3103-3105.	2.1	6
138	Reversible magnetization variations in large field ranges associated to periodic arrays of antidots. IEEE Transactions on Magnetics, 2005, 41, 3106-3108.	2.1	10
139	Multidimensional energy barrier distributions of interacting magnetic particles evaluated at different magnetization states. Journal of Applied Physics, 2005, 97, 10J315.	2.5	12
140	Multiscale calculations of magnetization reversal in soft/hard magnetic bilayer. , 2005, , .		0
141	Modeling of long-time thermal magnetisation decay in interacting granular magnetic materials. , 2005, , .		0
142	Multiscale versus micromagnetic calculations of the switching field reduction in FePtâ^•FeRh bilayers with perpendicular exchange spring. Journal of Applied Physics, 2005, 97, 10J101.	2.5	14
143	Exchange spring structures and coercivity reduction in FePtâ^•FeRh bilayers: A comparison of multiscale and micromagnetic calculations. Applied Physics Letters, 2005, 87, 122501.	3.3	46
144	Adiabatic dynamics of small ferromagnetic particles. Journal of Applied Physics, 2005, 97, 10A711.	2.5	1

#	Article	IF	CITATIONS
145	Thermal fluctuations and longitudinal relaxation of single-domain magnetic particles at elevated temperatures. Physical Review B, 2004, 70, .	3.2	84
146	Numerical evaluation of energy barriers and magnetic relaxation in interacting nanostructured magnetic systems. Physica B: Condensed Matter, 2004, 343, 189-194.	2.7	4
147	Consistency of thermal activation model based on the stochastic Landau–Lifshitz equation and classical spin-wave description. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 251-253.	2.3	1
148	Numerical evaluation of multidimensional energy barriers for FePt and Co particles. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1169-E1171.	2.3	5
149	Implementation of the "Hyperdynamics of Infrequent Events―Method for Acceleration of Thermal Switching Dynamics of Magnetic Moments. IEEE Transactions on Magnetics, 2004, 40, 2140-2142.	2.1	2
150	Magnetization reversal via perpendicular exchange spring inFePtâ^•FeRhbilayer films. Physical Review B, 2004, 70, .	3.2	74
151	Brownian dynamics approach to interacting magnetic moments. Journal of Magnetism and Magnetic Materials, 2003, 266, 28-35.	2.3	34
152	Influence of exchange on signal-to-noise ratio in longitudinal recording media. Journal of Applied Physics, 2002, 91, 3129-3138.	2.5	6
153	Langevin dynamic simulation of spin waves in a micromagnetic model. Physical Review B, 2002, 65, .	3.2	36
154	The transverse biased initial susceptibility measurements simulated in a two-zoned 2D system. Computational Materials Science, 2002, 25, 519-524.	3.0	0
155	Long-time calculation of the thermal magnetization reversal using Metropolis Monte Carlo. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 1052-1056.	2.3	3
156	Micromagnetic simulation of transverse biased initial susceptibility measurements. Physica B: Condensed Matter, 2001, 299, 205-214.	2.7	2
157	Longitudinal recording media performance as a function of exchange, linear recording density and media texture. IEEE Transactions on Magnetics, 2001, 37, 1363-1365.	2.1	2
158	Micromagnetic modelling of thermal decay in interacting systems. Journal of Magnetism and Magnetic Materials, 2000, 221, 132-136.	2.3	8
159	Field and thermally activated demagnetization processes in ultra-thin films with in-plane anisotropy: occurrence of non-equivalent reversal modes. Journal of Magnetism and Magnetic Materials, 2000, 222, 314-326.	2.3	6
160	Evaluation of the anisotropy constant using transverse biased initial susceptibility method. IEEE Transactions on Magnetics, 2000, 36, 3260-3262.	2.1	2
161	Real time quantification of Monte Carlo steps for different time scales. Journal of Applied Physics, 2000, 87, 4798-4800.	2.5	13
162	Quasiperiodicity, bistability, and chaos in the Landau-Lifshitz equation. Physical Review B, 2000, 61, 11613-11617.	3.2	60

#	Article	IF	CITATIONS
163	Micromagnetic modeling of field and thermally activated demagnetization processes in ultrathin films with in-plane anisotropy. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 238-239.	2.3	1
164	Magnetic viscosity in multilayers: a micromagnetic approach. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 810-812.	2.3	3
165	Simulation of magnetic relaxation by a Monte Carlo technique with correlations and quantified time steps. IEEE Transactions on Magnetics, 1999, 35, 3730-3732.	2.1	5
166	Evidences of non-Arrhenius magnetic relaxation in macroscopic systems: Experiments and related simulations. Europhysics Letters, 1998, 41, 671-676.	2.0	15
167	Influence of the system parameters on the non-Arrhenius magnetic relaxation of systems having distributed properties. Journal of Applied Physics, 1998, 83, 6509-6511.	2.5	1
168	Influence of the configurational degeneracy on the hysteretic behavior of a system of magnetostatically coupled magnetic moments. Journal of Applied Physics, 1998, 83, 7393-7395.	2.5	6
169	Local and global demagnetization process: Is there any self-organized critical behavior?. Journal of Applied Physics, 1998, 83, 7228-7230.	2.5	3
170	Quantitative analysis of the collective behavior in a micromagnetic model. Physical Review B, 1997, 55, 921-930.	3.2	19
171	Micromagnetic analysis of the small angle magnetization rotation (SAMR) method response of a twisted low-magnetostrictive wire. IEEE Transactions on Magnetics, 1997, 33, 3955-3957.	2.1	0
172	Wigner Random Banded Matrices with Sparse Structure: Local Spectral Density of States. Physical Review Letters, 1996, 76, 1603-1606.	7.8	106
173	Dark solitons in discrete lattices. Physical Review E, 1994, 50, 5020-5032.	2.1	83
174	Magnetic gap solitons in a one-dimensional Heisenberg antiferromagnetic chain. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 189, 403-408.	2.1	5
175	Dimerized ground states of the Frenkel-Kontorova model with a transversal degree of freedom. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 191, 257-260.	2.1	4
176	Kink-profile vibrational modes in one-dimensional nonlinear lattices. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 178, 123-128.	2.1	12
177	Stability of intrinsic localized modes in anharmonic 1-D lattices. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 178, 129-137.	2.1	25
178	Dynamical solitons in a one-dimensional nonlinear diatomic chain. Physical Review B, 1993, 47, 3153-3160.	3.2	40
179	Small-amplitude solitary waves on a lattice subject to nonvanishing boundary conditions. Physical Review B, 1993, 47, 7971-7978.	3.2	9
180	Dynamics and interaction of solitons on an integrable inhomogeneous lattice. Physical Review E, 1993, 48, 563-568.	2.1	91

#	Article	IF	CITATIONS
181	Strongly localized gap solitons in diatomic lattices. Physical Review E, 1993, 48, 4128-4131.	2.1	24
182	Frenkel-Kontorova model with a transversal degree of freedom: Static properties of kinks. Physical Review B, 1993, 48, 3734-3743.	3.2	22
183	Interference effects in soliton scattering by impurities. Journal of Physics A, 1992, 25, 5711-5728.	1.6	12
184	Some features of the repulsive discrete nonlinear Schrödinger equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 1992, 169, 359-363.	2.1	11
185	Josephson-junction dynamics in the presence of a localized magnetic inhomogeneity. Physical Review B, 1991, 43, 5419-5424.	3.2	11
186	Radiative effects in the theory of beam propagation at nonlinear interfaces. Physical Review A, 1990, 41, 1677-1688.	2.5	74
187	Finite-size effects in fluxon scattering by an inhomogeneity. Physics Letters, Section A: General, Atomic and Solid State Physics, 1988, 129, 449-452.	2.1	10
188	Resonant and non-resonant soliton scattering by impurities. Physics Letters, Section A: General, Atomic and Solid State Physics, 1987, 125, 35-40.	2.1	53
189	Numerical evaluation of slow thermally induced magnetization reversal in granular magnetic materials. , 0, , .		0