Nikhil A Koratkar

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4349474/nikhil-a-koratkar-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

167	20,691	68	143
papers	citations	h-index	g-index
174 ext. papers	23,127 ext. citations	11.9 avg, IF	6.95 L-index

#	Paper	IF	Citations
167	Reversing fatigue in carbon-fiber reinforced vitrimer composites. <i>Carbon</i> , 2022 , 187, 108-114	10.4	3
166	Oxygen Reduction Reaction with Manganese Oxide Nanospheres in Microbial Fuel Cells <i>ACS Omega</i> , 2022 , 7, 11777-11787	3.9	0
165	Corrosion Resistance of Sulfur-Selenium Alloy Coatings. <i>Advanced Materials</i> , 2021 , e2104467	24	3
164	ESSENCE - A rapid, shear-enhanced, flow-through, capacitive electrochemical platform for rapid detection of biomolecules. <i>Biosensors and Bioelectronics</i> , 2021 , 182, 113163	11.8	6
163	Orientation-Controlled Large-Area Epitaxial PbI Thin Films with Tunable Optical Properties. <i>ACS Applied Materials & Description (Note: Applied Materials & Description (Note:</i>	9.5	3
162	Controlled Re doping in MoS2 by chemical vapor deposition. <i>Inorganic Chemistry Communication</i> , 2021 , 123, 108329	3.1	2
161	Examining the electron transport in chalcogenide perovskite BaZrS3. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 3892-3900	7.1	2
160	Bandgap Tuning in BaZrS3 Perovskite Thin Films. ACS Applied Electronic Materials, 2021, 3, 3306-3312	4	4
159	Phase transformation and enhanced blue photoluminescence of zirconium oxide poly-crystalline thin film induced by Ni ion beam irradiation. <i>Scientific Reports</i> , 2021 , 11, 17672	4.9	3
158	Virtual alternating current measurements advance semiconductor gas sensors performance in the internet of things. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	0
157	Alloying of Alkali Metals with Tellurene. <i>Advanced Energy Materials</i> , 2021 , 11, 2003248	21.8	3
156	Local ferroelectric polarization in antiferroelectric chalcogenide perovskite BaZrS3 thin films. <i>Physical Review B</i> , 2020 , 102,	3.3	4
155	Multifunctional Bio-Nanocomposite Coatings for Perishable Fruits. <i>Advanced Materials</i> , 2020 , 32, e1908	32941	39
154	Substitutional transition metal doping in MoS2: a first-principles study. <i>Nano Express</i> , 2020 , 1, 010008	2	6
153	Bio-Nanocomposite Coatings: Multifunctional Bio-Nanocomposite Coatings for Perishable Fruits (Adv. Mater. 26/2020). <i>Advanced Materials</i> , 2020 , 32, 2070199	24	
152	Recent advances in the mitigation of dendrites in lithium-metal batteries. <i>Journal of Applied Physics</i> , 2020 , 128, 010903	2.5	6
151	In situ healing of dendrites in a potassium metal battery. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 5588-5594	11.5	45

(2019-2020)

Nanoparticles for Water Purification via Solar Steam Generation. <i>ACS Applied Materials & Amp;</i> Interfaces, 2020 , 12, 13229-13238	9.5	42
Carbon science perspective in 2020: Current research and future challenges. <i>Carbon</i> , 2020 , 161, 373-39	110.4	35
Efficient Polysulfide Redox Enabled by Lattice-Distorted NiFe Intermetallic Electrocatalyst-Modified Separator for Lithium-Sulfur Batteries. <i>ACS Applied Materials & ACS Applied & ACS ACS ACS ACS ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	30
Sculpting Artificial Edges in Monolayer MoS for Controlled Formation of Surface-Enhanced Raman Hotspots. <i>ACS Nano</i> , 2020 , 14, 6258-6268	16.7	17
An Environmentally Stable and Lead-Free Chalcogenide Perovskite. <i>Advanced Functional Materials</i> , 2020 , 30, 2001387	15.6	23
Maleic anhydride-functionalized graphene nanofillers render epoxy coatings highly resistant to corrosion and microbial attack. <i>Carbon</i> , 2020 , 159, 586-597	10.4	26
Short period sinusoidal thermal modulation for quantitative identification of gas species. <i>Nanoscale</i> , 2020 , 12, 220-229	7.7	22
Aqueous lithium-ion batteries with niobium tungsten oxide anodes for superior volumetric and rate capability. <i>Energy Storage Materials</i> , 2020 , 27, 506-513	19.4	20
Heterogeneity-induced mesoscale toughening in polymer nanocomposites. <i>Materialia</i> , 2020 , 11, 10067	33.2	5
Sensible graphene oxide differentiates macrophages and : a bio-nano interplay in attenuating intracellular parasite <i>RSC Advances</i> , 2020 , 10, 27502-27511	3.7	4
Improvement in fatigue life of carbon fibre reinforced polymer composites via a Nano-Silica Modified Matrix. <i>Carbon</i> , 2020 , 170, 220-224	10.4	16
A dual-ion accepting vanadium carbide nanowire cathode integrated with carbon cloths for high cycling stability. <i>Nanoscale</i> , 2020 , 12, 20868-20874	7.7	4
Graphene's Partial Transparency to van der Waals and Electrostatic Interactions. <i>Langmuir</i> , 2019 , 35, 12306-12316	4	6
Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. <i>Journal of Colloid and Interface Science</i> , 2019 , 542, 54-62	9.3	134
Quantifying a scientist's intellectual leadership. <i>Carbon</i> , 2019 , 150, 485-488	10.4	1
Structural transformation and embrittlement during lithiation and delithiation cycles in an amorphous silicon electrode. <i>Acta Materialia</i> , 2019 , 175, 11-20	8.4	15
Catalyst-Free and Morphology-Controlled Growth of 2D Perovskite Nanowires for Polarized Light Detection. <i>Advanced Optical Materials</i> , 2019 , 7, 1900039	8.1	18
Vanadium disulfide flakes with nanolayered titanium disulfide coating as cathode materials in lithium-ion batteries. <i>Nature Communications</i> , 2019 , 10, 1764	17.4	42
	Carbon science perspective in 2020: Current research and future challenges. <i>Carbon</i> , 2020, 161, 373-39 Efficient Polysulfide Redox Enabled by Lattice-Distorted NiFe Intermetallic Electrocatalyst-Modified Separator for Lithium-Sulfur Batteries. <i>ACS Applied Materials & Bamp; Interfaces</i> , 2020, 12, 19572-19580 Sculpting Artificial Edges in Monolayer MoS for Controlled Formation of Surface-Enhanced Raman Hotspots. <i>ACS Nano</i> , 2020, 14, 6258-6268 An Environmentally Stable and Lead-Free Chalcogenide Perovskite. <i>Advanced Functional Materials</i> , 2020, 30, 2001387 Maleic anhydride-functionalized graphene nanofillers render epoxy coatings highly resistant to corrosion and microbial attack. <i>Carbon</i> , 2020, 159, 586-597 Short period sinusoidal thermal modulation for quantitative identification of gas species. <i>Nanoscale</i> , 2020, 12, 220-229 Aqueous lithium-ion batteries with niobium tungsten oxide anodes for superior volumetric and rate capability. <i>Energy Starage Materials</i> , 2020, 27, 506-513 Heterogeneity-induced mesoscale toughening in polymer nanocomposites. <i>Materialia</i> , 2020, 11, 10067. Sensible graphene oxide differentiates macrophages and: a bio-nano interplay in attenuating intracellular parasite. <i>RSC Advances</i> , 2020, 10, 27502-27511 Improvement in fatigue life of carbon fibre reinforced polymer composites via a Nano-Silica Modified Matrix. <i>Carbon</i> , 2020, 170, 220-224 A dual-ion accepting vanadium carbide nanowire cathode integrated with carbon cloths for high cycling stability. <i>Nanoscale</i> , 2020, 12, 20868-20874 Graphene's Partial Transparency to van der Waals and Electrostatic Interactions. <i>Langmuir</i> , 2019, 35, 12306-12316 Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. <i>Journal of Colloid and Interface Science</i> , 2019, 542, 54-62 Quantifying a scientist's intellectual leadership. <i>Carbon</i> , 2019, 175, 11-20 Catalyst-Free and Morphology-Controlled Growth of 2D Perovskite Nanowires for Polarized Light Detection. <i>Advan</i>	Carbon science perspective in 2020; Current research and future challenges. Carbon, 2020, 161, 373-3911.0.4 Efficient Polysulfide Redox Enabled by Lattice-Distorted NiFe Intermetallic Electrocatalyst-Modified Separator for Lithium-Sulfur Batteries. ACS Applied Materials 8amp; 9.5 Interfaces, 2020, 12, 19572-19580 Sculpting Artificial Edges in Monolayer MoS for Controlled Formation of Surface-Enhanced Raman Hotspots. ACS Nano, 2020, 14, 6258-6268 An Environmentally Stable and Lead-Free Chalcogenide Perovskite. Advanced Functional Materials, 2020, 30, 2001387 Maleic anhydride-functionalized graphene nanofillers render epoxy coatings highly resistant to corrosion and microbial attack. Carbon, 2020, 159, 586-597 Short period sinusoidal thermal modulation for quantitative identification of gas species. Nanoscale, 2020, 12, 220-229 Aqueous lithium-ion batteries with niobium tungsten oxide anodes for superior volumetric and rate capability. Energy Storage Materials, 2020, 27, 506-513 Heterogeneity-induced mesoscale toughening in polymer nanocomposites. Materialia, 2020, 11, 100673,3.2 Sensible graphene oxide differentiates macrophages and: a bio-nano interplay in attenuating intracellular paraste. RSC Advances, 2020, 10, 27502-27511 Improvement in fatigue life of carbon fibre reinforced polymer composites via a Nano-Silica Modified Matrix. Carbon, 2020, 170, 220-2224 A dual-ion accepting vanadium carbide nanowire cathode integrated with carbon cloths for high cycling stability. Nanoscale, 2020, 12, 20868-20874 Graphene's Partial Transparency to van der Waals and Electrostatic Interactions. Langmuir, 2019, 35, 12306-12316 Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. Journal of Colloid and Interface Science, 2019, 542, 54-62 Quantifying a scientist's intellectual leadership. Carbon, 2019, 150, 485-488 10.4 Catalyst-Free and Morphology-Controlled Growth of 2D Perovskite Nanowires for Polarized Light Detection. Advanced Optic

132	Exploiting self-heat in a lithium metal battery for dendrite healing. <i>Energy Storage Materials</i> , 2019 , 20, 291-298	19.4	33
131	Reversible Alloying of Phosphorene with Potassium and Its Stabilization Using Reduced Graphene Oxide Buffer Layers. <i>ACS Nano</i> , 2019 , 13, 14094-14106	16.7	21
130	Tellurene based chemical sensor. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 26326-26333	13	58
129	Multifunctional and Water-Resistant MXene-Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances. <i>Advanced Functional Materials</i> , 2019 , 29, 1806819	15.6	350
128	Highly sulfiphilic Ni-Fe bimetallic oxide nanoparticles anchored on carbon nanotubes enable effective immobilization and conversion of polysulfides for stable lithium-sulfur batteries. <i>Carbon</i> , 2019 , 142, 32-39	10.4	54
127	A carbon science perspective in 2018: Current achievements and future challenges. <i>Carbon</i> , 2018 , 132, 785-801	10.4	59
126	Recent advances in phosphorene as a sensing material. <i>Nano Today</i> , 2018 , 20, 13-32	17.9	105
125	Porous Graphene Films with Unprecedented Elastomeric Scaffold-Like Folding Behavior for Foldable Energy Storage Devices. <i>Advanced Materials</i> , 2018 , 30, e1707025	24	84
124	Utilizing van der Waals Slippery Interfaces to Enhance the Electrochemical Stability of Silicon Film Anodes in Lithium-Ion Batteries. <i>ACS Applied Materials & District Materials</i>	9.5	38
123	Hexagonal Boron Nitride: The Thinnest Insulating Barrier to Microbial Corrosion. <i>ACS Nano</i> , 2018 , 12, 2242-2252	16.7	42
122	Adsorption and Diffusion of Lithium and Sodium on Defective Rhenium Disulfide: A First Principles Study. <i>ACS Applied Materials & Discourse amp; Interfaces</i> , 2018 , 10, 5373-5384	9.5	67
121	Effects of adatom and gas molecule adsorption on the physical properties of tellurene: a first principles investigation. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 4058-4066	3.6	60
120	Self-heating-induced healing of lithium dendrites. <i>Science</i> , 2018 , 359, 1513-1516	33.3	286
119	Analysis of Deposition Methods for Lithium-Ion Battery Anodes Using Reduced Graphene Oxide Slurries on Copper Foil. <i>Journal of Manufacturing Science and Engineering, Transactions of the ASME</i> , 2018 , 140,	3.3	1
118	Highly Bendable Ionic Soft Actuator Based on Nitrogen-Enriched 3D Hetero-Nanostructure Electrode. <i>Advanced Functional Materials</i> , 2018 , 28, 1802464	15.6	32
117	A flexible carbon/sulfur-cellulose core-shell structure for advanced lithiumBulfur batteries. <i>Energy Storage Materials</i> , 2018 , 15, 388-395	19.4	23
116	Ultrathin and Strong Electrospun Porous Fiber Separator. ACS Applied Energy Materials, 2018, 1, 4794-48	86.3	24
115	Utilizing a graphene matrix to overcome the intrinsic limitations of red phosphorus as an anode material in lithium-ion batteries. <i>Carbon</i> , 2018 , 127, 588-595	10.4	39

(2016-2018)

114	Repurposing paper by-product lignosulfonate as a sulfur donor/acceptor for high performance lithiumBulfur batteries. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 422-429	5.8	18
113	Thermally Conductive Phase Change Composites Featuring Anisotropic Graphene Aerogels for Real-Time and Fast-Charging Solar-Thermal Energy Conversion. <i>Advanced Functional Materials</i> , 2018 , 28, 1805365	15.6	154
112	Theoretical and Experimental Insight into the Mechanism for Spontaneous Vertical Growth of ReS2 Nanosheets. <i>Advanced Functional Materials</i> , 2018 , 28, 1801286	15.6	23
111	Screening-Level Life Cycle Assessment of Graphene-Poly(ether imide) Coatings Protecting Unalloyed Steel from Severe Atmospheric Corrosion. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 2656-2667	8.3	26
110	Protecting Silicon Film Anodes in Lithium-Ion Batteries Using an Atomically Thin Graphene Drape. <i>ACS Nano</i> , 2017 , 11, 5051-5061	16.7	96
109	Solid-State Hybrid Fibrous Supercapacitors Produced by Dead-End Tube Membrane Ultrafiltration. <i>Advanced Functional Materials</i> , 2017 , 27, 1606461	15.6	29
108	Self-assembly and morphological control of three-dimensional macroporous architectures built of two-dimensional materials. <i>Nano Today</i> , 2017 , 14, 100-123	17.9	56
107	Influence of releasing graphene oxide into a clayey sand: physical and mechanical properties. <i>RSC Advances</i> , 2017 , 7, 18060-18067	3.7	20
106	Sustainability of renewable fuel infrastructure: a screening LCA case study of anticorrosive graphene oxide epoxy liners in steel tanks for the storage of biodiesel and its blends. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 141-153	4.3	9
105	Effects of Defects on the Temperature-Dependent Thermal Conductivity of Suspended Monolayer Molybdenum Disulfide Grown by Chemical Vapor Deposition. <i>Advanced Functional Materials</i> , 2017 , 27, 1704357	15.6	31
104	Phosphorene as a Polysulfide Immobilizer and Catalyst in High-Performance Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2017 , 29, 1602734	24	249
103	Transition-Metal Substitution Doping in Synthetic Atomically Thin Semiconductors. <i>Advanced Materials</i> , 2016 , 28, 9735-9743	24	145
102	Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 18067-18074	13	121
101	Graphene-coated meshes for electroactive flow control devices utilizing two antagonistic functions of repellency and permeability. <i>Nature Communications</i> , 2016 , 7, 13345	17.4	23
100	Aging of Transition Metal Dichalcogenide Monolayers. ACS Nano, 2016, 10, 2628-35	16.7	267
99	Carbon science in 2016: Status, challenges and perspectives. <i>Carbon</i> , 2016 , 98, 708-732	10.4	200
98	Nanocomposites of a Cashew Nut Shell Derived Epoxy Resin and Graphene Platelets: From Flexible to Tough. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 1715-1721	8.3	27
97	A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene core hell additives. <i>Carbon</i> , 2016 , 101, 239-244	10.4	104

96	Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li S batteries. <i>Carbon</i> , 2016 , 108, 120-126	10.4	115
95	Fast Triggering of Shape Memory Polymers using an Embedded Carbon Nanotube Sponge Network. <i>Scientific Reports</i> , 2016 , 6, 24148	4.9	27
94	Vertically Oriented Arrays of ReS2 Nanosheets for Electrochemical Energy Storage and Electrocatalysis. <i>Nano Letters</i> , 2016 , 16, 3780-7	11.5	201
93	Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. <i>ACS Nano</i> , 2015 , 9, 1520-7	16.7	295
92	Folding insensitive, high energy density lithium-ion battery featuring carbon nanotube current collectors. <i>Carbon</i> , 2015 , 87, 292-298	10.4	59
91	Scalable and rapid Far Infrared reduction of graphene oxide for high performance lithium ion batteries. <i>Energy Storage Materials</i> , 2015 , 1, 9-16	19.4	30
90	Effect of Platelet Thickness on Wear of Graphene B olytetrafluoroethylene (PTFE) Composites. <i>Tribology Letters</i> , 2015 , 59, 1	2.8	36
89	Micromilling Responses of Hierarchical Graphene Composites. <i>Journal of Manufacturing Science and Engineering, Transactions of the ASME</i> , 2015 , 137,	3.3	6
88	Controlled crumpling of graphene oxide films for tunable optical transmittance. <i>Advanced Materials</i> , 2015 , 27, 3256-65	24	112
87	Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. <i>ACS Nano</i> , 2015 , 9, 3023-31	16.7	156
86	Organic-Inorganic Heterointerfaces for Ultrasensitive Detection of Ultraviolet Light. <i>Nano Letters</i> , 2015 , 15, 3787-92	11.5	101
85	A Foldable Lithium-Sulfur Battery. <i>ACS Nano</i> , 2015 , 9, 11342-50	16.7	107
84	Shape memory fiber supercapacitors. <i>Nano Energy</i> , 2015 , 17, 330-338	17.1	56
83	Graphene oxide colloidal suspensions mitigate carbon diffusion during diamond turning of steel. <i>Journal of Manufacturing Processes</i> , 2015 , 17, 41-47	5	13
82	A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries. <i>Nano Energy</i> , 2015 , 11, 356-365	17.1	476
81	High-strain rate compressive behavior of multi-walled carbon nanotube dispersed thermoset epoxy resin. <i>Journal of Composite Materials</i> , 2015 , 49, 903-910	2.7	16
80	Graphene Oxide: Controlled Crumpling of Graphene Oxide Films for Tunable Optical Transmittance (Adv. Mater. 21/2015). <i>Advanced Materials</i> , 2015 , 27, 3222-3222	24	1
79	Superiority of Graphene over Polymer Coatings for Prevention of Microbially Induced Corrosion. <i>Scientific Reports</i> , 2015 , 5, 13858	4.9	42

(2013-2015)

78	Cl-Doped ZnO Nanowire Arrays on 3D Graphene Foam with Highly Efficient Field Emission and Photocatalytic Properties. <i>Small</i> , 2015 , 11, 4785-92	11	60
77	Localized transformation of few-layered graphene producing graphitic shells with nanoparticle cores for catalytic applications. <i>Carbon</i> , 2015 , 85, 406-413	10.4	8
76	Wetting-transparent graphene films for hydrophobic water-harvesting surfaces. <i>Advanced Materials</i> , 2014 , 26, 5166-72	24	81
75	Defect-induced plating of lithium metal within porous graphene networks. <i>Nature Communications</i> , 2014 , 5, 3710	17.4	329
74	Epoxy nanocomposites with two-dimensional transition metal dichalcogenide additives. <i>ACS Nano</i> , 2014 , 8, 5282-9	16.7	129
73	Large-area freestanding graphene paper for superior thermal management. <i>Advanced Materials</i> , 2014 , 26, 4521-6	24	308
72	Effect of defects on the intrinsic strength and stiffness of graphene. <i>Nature Communications</i> , 2014 , 5, 3186	17.4	435
71	Graphene Films: Wetting-Transparent Graphene Films for Hydrophobic Water-Harvesting Surfaces (Adv. Mater. 30/2014). <i>Advanced Materials</i> , 2014 , 26, 5070-5070	24	2
70	Enhanced lithiation in defective graphene. <i>Carbon</i> , 2014 , 80, 305-310	10.4	149
69	Mechanical Property Enhancement of Layered Reduced Graphene Oxide Papers by Non-Covalent Modification with Terephthalic Acid. <i>Particle and Particle Systems Characterization</i> , 2014 , 31, 337-341	3.1	10
68	Nanocarbon aerogel complexes inspired by the leaf structure. <i>Carbon</i> , 2014 , 77, 637-644	10.4	18
67	Far-infrared reduced graphene oxide as high performance electrodes for supercapacitors. <i>Carbon</i> , 2014 , 75, 201-208	10.4	30
66	Carbon nanotube sponges as conductive networks for supercapacitor devices. <i>Nano Energy</i> , 2013 , 2, 1025-1030	17.1	54
65	NiO nanoparticles deposited on graphene platelets as a cost-effective counter electrode in a dye sensitized solar cell. <i>Carbon</i> , 2013 , 56, 56-63	10.4	50
64	Synthesis and electrochemical performance characterization of Ce-doped Li 3 V 2 (PO 4) 3 /C as cathode materials for lithium-ion batteries. <i>Journal of Power Sources</i> , 2013 , 243, 33-39	8.9	71
63	Graphene Foams: Superhydrophobic Graphene Foams (Small 1/2013). Small, 2013, 9, 2-2	11	7
62	Graphenenanotubeiron hierarchical nanostructure as lithium ion battery anode. <i>ACS Nano</i> , 2013 , 7, 4242-51	16.7	173
61	Passivation of microbial corrosion using a graphene coating. <i>Carbon</i> , 2013 , 56, 45-49	10.4	102

60	Graphene drape minimizes the pinning and hysteresis of water drops on nanotextured rough surfaces. <i>ACS Nano</i> , 2013 , 7, 3512-21	16.7	37
59	Raman spectroscopic imaging of graphene dispersion in polymer composites. <i>Carbon</i> , 2013 , 62, 510-51	310.4	45
58	Electrical transport and breakdown in graphene multilayers loaded with electron beam induced deposited platinum. <i>ACS Applied Materials & District Research</i> , 2013, 5, 3424-30	9.5	6
57	Superhydrophobic graphene foams. <i>Small</i> , 2013 , 9, 75-80	11	161
56	Experimental Investigation of the Machinability of Epoxy Reinforced With Graphene Platelets. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2013, 135,	3.3	22
55	Nano-engineered Silicon Anodes for Lithium-Ion Rechargeable Batteries. <i>Nanostructure Science and Technology</i> , 2012 , 43-66	0.9	
54	Wetting transparency of graphene. <i>Nature Materials</i> , 2012 , 11, 217-22	27	831
53	Photothermally reduced graphene as high-power anodes for lithium-ion batteries. <i>ACS Nano</i> , 2012 , 6, 7867-78	16.7	275
52	Nano-engineered biocatalyst-electrode structures for next generation microbial fuel cells. <i>Nano Energy</i> , 2012 , 1, 3-5	17.1	31
51	High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. <i>Applied Physics Letters</i> , 2012 , 100, 203120	3.4	177
50	Nanostructured electrodes for high-power lithium ion batteries. <i>Nano Energy</i> , 2012 , 1, 518-533	17.1	279
49	Graphene supported nickel nanoparticle as a viable replacement for platinum in dye sensitized solar cells. <i>Nanoscale</i> , 2012 , 4, 926-30	7.7	108
48	Experimental Investigation of the Machinability of Epoxy Reinforced With Graphene Platelets 2012,		2
47	Control of epoxy creep using graphene. Small, 2012, 8, 1676-82	11	63
46	Nanocomposite Creep: Control of Epoxy Creep Using Graphene (Small 11/2012). Small, 2012, 8, 1675-1	675	6
45	Graphene-Based Chemical Sensors. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1746-53	6.4	433
44	Suppression of wear in graphene polymer composites. <i>Carbon</i> , 2012 , 50, 3178-3183	10.4	190
43	In situ thermal reduction of graphene oxide for high electrical conductivity and low percolation threshold in polyamide 6 nanocomposites. <i>Composites Science and Technology</i> , 2012 , 72, 284-289	8.6	115

42	Facet-insensitive graphene growth on copper. <i>Physical Review B</i> , 2012 , 85,	3.3	43
41	Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. <i>ACS Applied Materials & Discrete Section</i> 2011, 3, 3130-3	9.5	202
40	Enhanced Thermal Conductivity in a Nanostructured Phase Change Composite due to Low Concentration Graphene Additives. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 8753-8758	3.8	330
39	Graphene supported platinum nanoparticle counter-electrode for enhanced performance of dye-sensitized solar cells. <i>ACS Applied Materials & District Sciences</i> , 2011 , 3, 3884-9	9.5	143
38	Toughening in graphene ceramic composites. ACS Nano, 2011 , 5, 3182-90	16.7	494
37	Harvesting energy from water flow over graphene. <i>Nano Letters</i> , 2011 , 11, 3123-7	11.5	166
36	Graphene Eluminum nanocomposites. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2011 , 528, 7933-7937	5.3	426
35	High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. <i>Scientific Reports</i> , 2011 , 1, 166	4.9	457
34	FullereneBpoxy nanocomposites-enhanced mechanical properties at low nanofiller loading. Journal of Nanoparticle Research, 2011 , 13, 733-737	2.3	63
33	Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation. <i>Advanced Functional Materials</i> , 2011 , 21, 4617-4623	15.6	409
32	Raman study of interfacial load transfer in graphene nanocomposites. <i>Applied Physics Letters</i> , 2011 , 98, 063102	3.4	64
31	Functionally strain-graded nanoscoops for high power Li-ion battery anodes. <i>Nano Letters</i> , 2011 , 11, 37	7 ₁ 845	97
30	Enhanced thermal stability in graphene oxide covalently functionalized with 2-amino-4,6-didodecylamino-1,3,5-triazine. <i>Carbon</i> , 2011 , 49, 1258-1265	10.4	186
29	Depth sensing indentation of nanoscale graphene platelets in nanocomposite thin films. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1312, 1		2
28	Directed rebounding of droplets by microscale surface roughness gradients. <i>Applied Physics Letters</i> , 2010 , 96, 234103	3.4	66
27	Graphene nanoribbon composites. ACS Nano, 2010 , 4, 7415-20	16.7	239
26	Superhydrophobic to superhydrophilic wetting control in graphene films. <i>Advanced Materials</i> , 2010 , 22, 2151-4	24	321
25	Tunable bandgap in graphene by the controlled adsorption of water molecules. <i>Small</i> , 2010 , 6, 2535-8	11	240

24	Fracture and fatigue in graphene nanocomposites. Small, 2010, 6, 179-83	11	696
23	Heterogeneity in epoxy nanocomposites initiates crazing: significant improvements in fatigue resistance and toughening. <i>Small</i> , 2009 , 5, 1403-7	11	93
22	Nanostructured silicon anodes for lithium ion rechargeable batteries. Small, 2009, 5, 2236-42	11	330
21	Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano, 2009, 3, 3884	- 9 06.7	2005
20	Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field. <i>Journal of Applied Physics</i> , 2009 , 105, 054319	2.5	118
19	First-principles study of interaction of molecular hydrogen with Li-doped carbon nanotube peapod structures. <i>Physical Review B</i> , 2008 , 77,	3.3	35
18	Energy dissipation in carbon nanotube composites: a review. Journal of Materials Science, 2008, 43, 437	0 ₄ 43382	2 113
17	Nanostructured copper interfaces for enhanced boiling. <i>Small</i> , 2008 , 4, 1084-8	11	340
16	Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field. <i>Carbon</i> , 2008 , 46, 706-710	10.4	151
15	Wetting and electrowetting properties of carbon nanotube templated parylene films. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 4296-9	3.4	34
14	Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes. <i>Nano Letters</i> , 2007 , 7, 697-702	11.5	162
13	Enhanced photoemission from nanostructured surface topologies. <i>Applied Physics Letters</i> , 2006 , 89, 193	33.146	6
12	Water electrolysis activated by Ru nanorod array electrodes. <i>Applied Physics Letters</i> , 2006 , 88, 263106	3.4	38
11	Temperature-activated interfacial friction damping in carbon nanotube polymer composites. <i>Nano Letters</i> , 2006 , 6, 219-23	11.5	93
10	Utilizing interfaces in carbon nanotube reinforced polymer composites for structural damping. Journal of Materials Science, 2006 , 41, 7824-7829	4.3	75
9	Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites. <i>Applied Physics Letters</i> , 2005 , 87, 063102	3.4	112
8	Viscoelasticity in carbon nanotube composites. <i>Nature Materials</i> , 2005 , 4, 134-7	27	384
7	NANOSCALE FIELD IONIZATION SENSORS: A REVIEW. <i>International Journal of Nanoscience</i> , 2005 , 04, 945-949	0.6	

LIST OF PUBLICATIONS

6	Temperature effects on resistance of aligned multiwalled carbon nanotube films. <i>Journal of Nanoscience and Nanotechnology</i> , 2004 , 4, 744-8	1.3	34
5	Multifunctional structural reinforcement featuring carbon nanotube films. <i>Composites Science and Technology</i> , 2003 , 63, 1525-1531	8.6	96
4	Miniaturized gas ionization sensors using carbon nanotubes. <i>Nature</i> , 2003 , 424, 171-4	50.4	833
3	Wind Tunnel Testing of a Smart Rotor Model with Trailing-Edge Flaps. <i>Journal of the American Helicopter Society</i> , 2002 , 47, 263	1.2	38
2	Wind tunnel testing of a Mach-scaled rotor model with trailing-edge flaps. <i>Smart Materials and Structures</i> , 2001 , 10, 1-14	3.4	61
1	Analysis and Testing of Mach-Scaled Rotor with Trailing-Edge Flaps. <i>AIAA Journal</i> , 2000 , 38, 1113-1124	2.1	32