Nikhil A Koratkar

List of Publications by Citations

Source: https://exaly.com/author-pdf/4349474/nikhil-a-koratkar-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 20,691 167 143 h-index g-index citations papers 6.95 11.9 174 23,127 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
167	Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano, 2009, 3, 3884	- 9 6.7	2005
166	Miniaturized gas ionization sensors using carbon nanotubes. <i>Nature</i> , 2003 , 424, 171-4	50.4	833
165	Wetting transparency of graphene. <i>Nature Materials</i> , 2012 , 11, 217-22	27	831
164	Fracture and fatigue in graphene nanocomposites. Small, 2010, 6, 179-83	11	696
163	Toughening in graphene ceramic composites. <i>ACS Nano</i> , 2011 , 5, 3182-90	16.7	494
162	A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries. <i>Nano Energy</i> , 2015 , 11, 356-365	17.1	476
161	High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. <i>Scientific Reports</i> , 2011 , 1, 166	4.9	457
160	Effect of defects on the intrinsic strength and stiffness of graphene. <i>Nature Communications</i> , 2014 , 5, 3186	17.4	435
159	Graphene-Based Chemical Sensors. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1746-53	6.4	433
158	Graphene Eluminum nanocomposites. <i>Materials Science & Diagnostructural Materials: Properties, Microstructure and Processing,</i> 2011 , 528, 7933-7937	5.3	426
157	Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation. <i>Advanced Functional Materials</i> , 2011 , 21, 4617-4623	15.6	409
156	Viscoelasticity in carbon nanotube composites. <i>Nature Materials</i> , 2005 , 4, 134-7	27	384
155	Multifunctional and Water-Resistant MXene-Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances. <i>Advanced Functional Materials</i> , 2019 , 29, 1806819	15.6	350
154	Nanostructured copper interfaces for enhanced boiling. <i>Small</i> , 2008 , 4, 1084-8	11	340
153	Enhanced Thermal Conductivity in a Nanostructured Phase Change Composite due to Low Concentration Graphene Additives. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 8753-8758	3.8	330
152	Nanostructured silicon anodes for lithium ion rechargeable batteries. <i>Small</i> , 2009 , 5, 2236-42	11	330
151	Defect-induced plating of lithium metal within porous graphene networks. <i>Nature Communications</i> , 2014 , 5, 3710	17.4	329

(2011-2010)

150	Superhydrophobic to superhydrophilic wetting control in graphene films. <i>Advanced Materials</i> , 2010 , 22, 2151-4	24	321	
149	Large-area freestanding graphene paper for superior thermal management. <i>Advanced Materials</i> , 2014 , 26, 4521-6	24	308	
148	Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. <i>ACS Nano</i> , 2015 , 9, 1520-7	16.7	295	
147	Self-heating-induced healing of lithium dendrites. <i>Science</i> , 2018 , 359, 1513-1516	33.3	286	
146	Nanostructured electrodes for high-power lithium ion batteries. <i>Nano Energy</i> , 2012 , 1, 518-533	17.1	279	
145	Photothermally reduced graphene as high-power anodes for lithium-ion batteries. <i>ACS Nano</i> , 2012 , 6, 7867-78	16.7	275	
144	Aging of Transition Metal Dichalcogenide Monolayers. ACS Nano, 2016, 10, 2628-35	16.7	267	
143	Phosphorene as a Polysulfide Immobilizer and Catalyst in High-Performance Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2017 , 29, 1602734	24	249	
142	Tunable bandgap in graphene by the controlled adsorption of water molecules. <i>Small</i> , 2010 , 6, 2535-8	11	240	
141	Graphene nanoribbon composites. ACS Nano, 2010 , 4, 7415-20	16.7	239	
140	Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. <i>ACS Applied Materials & District Materia</i>	9.5	202	
139	Vertically Oriented Arrays of ReS2 Nanosheets for Electrochemical Energy Storage and Electrocatalysis. <i>Nano Letters</i> , 2016 , 16, 3780-7	11.5	201	
138	Carbon science in 2016: Status, challenges and perspectives. <i>Carbon</i> , 2016 , 98, 708-732	10.4	200	
137	Suppression of wear in graphene polymer composites. <i>Carbon</i> , 2012 , 50, 3178-3183	10.4	190	
136	Enhanced thermal stability in graphene oxide covalently functionalized with 2-amino-4,6-didodecylamino-1,3,5-triazine. <i>Carbon</i> , 2011 , 49, 1258-1265	10.4	186	
135	High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. <i>Applied Physics Letters</i> , 2012 , 100, 203120	3.4	177	
134	Graphenenanotubeiron hierarchical nanostructure as lithium ion battery anode. <i>ACS Nano</i> , 2013 , 7, 4242-51	16.7	173	
133	Harvesting energy from water flow over graphene. <i>Nano Letters</i> , 2011 , 11, 3123-7	11.5	166	

132	Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes. <i>Nano Letters</i> , 2007 , 7, 697-702	11.5	162
131	Superhydrophobic graphene foams. <i>Small</i> , 2013 , 9, 75-80	11	161
130	Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. <i>ACS Nano</i> , 2015 , 9, 3023-31	16.7	156
129	Thermally Conductive Phase Change Composites Featuring Anisotropic Graphene Aerogels for Real-Time and Fast-Charging Solar-Thermal Energy Conversion. <i>Advanced Functional Materials</i> , 2018 , 28, 1805365	15.6	154
128	Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field. <i>Carbon</i> , 2008 , 46, 706-710	10.4	151
127	Enhanced lithiation in defective graphene. <i>Carbon</i> , 2014 , 80, 305-310	10.4	149
126	Transition-Metal Substitution Doping in Synthetic Atomically Thin Semiconductors. <i>Advanced Materials</i> , 2016 , 28, 9735-9743	24	145
125	Graphene supported platinum nanoparticle counter-electrode for enhanced performance of dye-sensitized solar cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2011 , 3, 3884-9	9.5	143
124	Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. <i>Journal of Colloid and Interface Science</i> , 2019 , 542, 54-62	9.3	134
123	Epoxy nanocomposites with two-dimensional transition metal dichalcogenide additives. <i>ACS Nano</i> , 2014 , 8, 5282-9	16.7	129
122	Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 18067-18074	13	121
121	Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field. <i>Journal of Applied Physics</i> , 2009 , 105, 054319	2.5	118
120	In situ thermal reduction of graphene oxide for high electrical conductivity and low percolation threshold in polyamide 6 nanocomposites. <i>Composites Science and Technology</i> , 2012 , 72, 284-289	8.6	115
119	Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li S batteries. <i>Carbon</i> , 2016 , 108, 120-126	10.4	115
118	Energy dissipation in carbon nanotube composites: a review. <i>Journal of Materials Science</i> , 2008 , 43, 437	70443382	! 113
117	Controlled crumpling of graphene oxide films for tunable optical transmittance. <i>Advanced Materials</i> , 2015 , 27, 3256-65	24	112
116	Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites. <i>Applied Physics Letters</i> , 2005 , 87, 063102	3.4	112
115	Graphene supported nickel nanoparticle as a viable replacement for platinum in dye sensitized solar cells. <i>Nanoscale</i> , 2012 , 4, 926-30	7.7	108

114	A Foldable Lithium-Sulfur Battery. ACS Nano, 2015 , 9, 11342-50	16.7	107
113	Recent advances in phosphorene as a sensing material. <i>Nano Today</i> , 2018 , 20, 13-32	17.9	105
112	A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene coreShell additives. <i>Carbon</i> , 2016 , 101, 239-244	10.4	104
111	Passivation of microbial corrosion using a graphene coating. <i>Carbon</i> , 2013 , 56, 45-49	10.4	102
110	Organic-Inorganic Heterointerfaces for Ultrasensitive Detection of Ultraviolet Light. <i>Nano Letters</i> , 2015 , 15, 3787-92	11.5	101
109	Functionally strain-graded nanoscoops for high power Li-ion battery anodes. <i>Nano Letters</i> , 2011 , 11, 37	7 ₁₈₄₅	97
108	Protecting Silicon Film Anodes in Lithium-Ion Batteries Using an Atomically Thin Graphene Drape. <i>ACS Nano</i> , 2017 , 11, 5051-5061	16.7	96
107	Multifunctional structural reinforcement featuring carbon nanotube films. <i>Composites Science and Technology</i> , 2003 , 63, 1525-1531	8.6	96
106	Heterogeneity in epoxy nanocomposites initiates crazing: significant improvements in fatigue resistance and toughening. <i>Small</i> , 2009 , 5, 1403-7	11	93
105	Temperature-activated interfacial friction damping in carbon nanotube polymer composites. <i>Nano Letters</i> , 2006 , 6, 219-23	11.5	93
104	Porous Graphene Films with Unprecedented Elastomeric Scaffold-Like Folding Behavior for Foldable Energy Storage Devices. <i>Advanced Materials</i> , 2018 , 30, e1707025	24	84
103	Wetting-transparent graphene films for hydrophobic water-harvesting surfaces. <i>Advanced Materials</i> , 2014 , 26, 5166-72	24	81
102	Utilizing interfaces in carbon nanotube reinforced polymer composites for structural damping. Journal of Materials Science, 2006 , 41, 7824-7829	4.3	75
101	Synthesis and electrochemical performance characterization of Ce-doped Li 3 V 2 (PO 4) 3 /C as cathode materials for lithium-ion batteries. <i>Journal of Power Sources</i> , 2013 , 243, 33-39	8.9	71
100	Adsorption and Diffusion of Lithium and Sodium on Defective Rhenium Disulfide: A First Principles Study. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 5373-5384	9.5	67
99	Directed rebounding of droplets by microscale surface roughness gradients. <i>Applied Physics Letters</i> , 2010 , 96, 234103	3.4	66
98	Raman study of interfacial load transfer in graphene nanocomposites. <i>Applied Physics Letters</i> , 2011 , 98, 063102	3.4	64
97	Control of epoxy creep using graphene. <i>Small</i> , 2012 , 8, 1676-82	11	63

96	Fullerene poxy nanocomposites-enhanced mechanical properties at low nanofiller loading. Journal of Nanoparticle Research, 2011 , 13, 733-737	2.3	63
95	Wind tunnel testing of a Mach-scaled rotor model with trailing-edge flaps. <i>Smart Materials and Structures</i> , 2001 , 10, 1-14	3.4	61
94	Effects of adatom and gas molecule adsorption on the physical properties of tellurene: a first principles investigation. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 4058-4066	3.6	60
93	Cl-Doped ZnO Nanowire Arrays on 3D Graphene Foam with Highly Efficient Field Emission and Photocatalytic Properties. <i>Small</i> , 2015 , 11, 4785-92	11	60
92	Folding insensitive, high energy density lithium-ion battery featuring carbon nanotube current collectors. <i>Carbon</i> , 2015 , 87, 292-298	10.4	59
91	A carbon science perspective in 2018: Current achievements and future challenges. <i>Carbon</i> , 2018 , 132, 785-801	10.4	59
90	Tellurene based chemical sensor. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 26326-26333	13	58
89	Self-assembly and morphological control of three-dimensional macroporous architectures built of two-dimensional materials. <i>Nano Today</i> , 2017 , 14, 100-123	17.9	56
88	Shape memory fiber supercapacitors. <i>Nano Energy</i> , 2015 , 17, 330-338	17.1	56
87	Carbon nanotube sponges as conductive networks for supercapacitor devices. <i>Nano Energy</i> , 2013 , 2, 1025-1030	17.1	54
86	Highly sulfiphilic Ni-Fe bimetallic oxide nanoparticles anchored on carbon nanotubes enable effective immobilization and conversion of polysulfides for stable lithium-sulfur batteries. <i>Carbon</i> , 2019 , 142, 32-39	10.4	54
85	NiO nanoparticles deposited on graphene platelets as a cost-effective counter electrode in a dye sensitized solar cell. <i>Carbon</i> , 2013 , 56, 56-63	10.4	50
84	In situ healing of dendrites in a potassium metal battery. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 5588-5594	11.5	45
83	Raman spectroscopic imaging of graphene dispersion in polymer composites. <i>Carbon</i> , 2013 , 62, 510-513	3 10.4	45
82	Facet-insensitive graphene growth on copper. <i>Physical Review B</i> , 2012 , 85,	3.3	43
81	Vanadium disulfide flakes with nanolayered titanium disulfide coating as cathode materials in lithium-ion batteries. <i>Nature Communications</i> , 2019 , 10, 1764	17.4	42
80	Flame Synthesis of Superhydrophilic Carbon Nanotubes/Ni Foam Decorated with FeO Nanoparticles for Water Purification via Solar Steam Generation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 13229-13238	9.5	42
79	Hexagonal Boron Nitride: The Thinnest Insulating Barrier to Microbial Corrosion. <i>ACS Nano</i> , 2018 , 12, 2242-2252	16.7	42

(2015-2015)

78	Superiority of Graphene over Polymer Coatings for Prevention of Microbially Induced Corrosion. <i>Scientific Reports</i> , 2015 , 5, 13858	4.9	42
77	Multifunctional Bio-Nanocomposite Coatings for Perishable Fruits. <i>Advanced Materials</i> , 2020 , 32, e1908	22941	39
76	Utilizing a graphene matrix to overcome the intrinsic limitations of red phosphorus as an anode material in lithium-ion batteries. <i>Carbon</i> , 2018 , 127, 588-595	10.4	39
75	Utilizing van der Waals Slippery Interfaces to Enhance the Electrochemical Stability of Silicon Film Anodes in Lithium-Ion Batteries. <i>ACS Applied Materials & Discrete State </i>	9.5	38
74	Water electrolysis activated by Ru nanorod array electrodes. <i>Applied Physics Letters</i> , 2006 , 88, 263106	3.4	38
73	Wind Tunnel Testing of a Smart Rotor Model with Trailing-Edge Flaps. <i>Journal of the American Helicopter Society</i> , 2002 , 47, 263	1.2	38
72	Graphene drape minimizes the pinning and hysteresis of water drops on nanotextured rough surfaces. <i>ACS Nano</i> , 2013 , 7, 3512-21	16.7	37
71	Effect of Platelet Thickness on Wear of Graphene P olytetrafluoroethylene (PTFE) Composites. <i>Tribology Letters</i> , 2015 , 59, 1	2.8	36
70	Carbon science perspective in 2020: Current research and future challenges. <i>Carbon</i> , 2020 , 161, 373-39	110.4	35
69	First-principles study of interaction of molecular hydrogen with Li-doped carbon nanotube peapod structures. <i>Physical Review B</i> , 2008 , 77,	3.3	35
68	Wetting and electrowetting properties of carbon nanotube templated parylene films. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 4296-9	3.4	34
67	Temperature effects on resistance of aligned multiwalled carbon nanotube films. <i>Journal of Nanoscience and Nanotechnology</i> , 2004 , 4, 744-8	1.3	34
66	Exploiting self-heat in a lithium metal battery for dendrite healing. <i>Energy Storage Materials</i> , 2019 , 20, 291-298	19.4	33
65	Highly Bendable Ionic Soft Actuator Based on Nitrogen-Enriched 3D Hetero-Nanostructure Electrode. <i>Advanced Functional Materials</i> , 2018 , 28, 1802464	15.6	32
64	Analysis and Testing of Mach-Scaled Rotor with Trailing-Edge Flaps. <i>AIAA Journal</i> , 2000 , 38, 1113-1124	2.1	32
63	Effects of Defects on the Temperature-Dependent Thermal Conductivity of Suspended Monolayer Molybdenum Disulfide Grown by Chemical Vapor Deposition. <i>Advanced Functional Materials</i> , 2017 , 27, 1704357	15.6	31
62	Nano-engineered biocatalyst-electrode structures for next generation microbial fuel cells. <i>Nano Energy</i> , 2012 , 1, 3-5	17.1	31
61	Scalable and rapid Far Infrared reduction of graphene oxide for high performance lithium ion batteries. <i>Energy Storage Materials</i> , 2015 , 1, 9-16	19.4	30

60	Efficient Polysulfide Redox Enabled by Lattice-Distorted NiFe Intermetallic Electrocatalyst-Modified Separator for Lithium-Sulfur Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 19572-19580	9.5	30
59	Far-infrared reduced graphene oxide as high performance electrodes for supercapacitors. <i>Carbon</i> , 2014 , 75, 201-208	10.4	30
58	Solid-State Hybrid Fibrous Supercapacitors Produced by Dead-End Tube Membrane Ultrafiltration. <i>Advanced Functional Materials</i> , 2017 , 27, 1606461	15.6	29
57	Nanocomposites of a Cashew Nut Shell Derived Epoxy Resin and Graphene Platelets: From Flexible to Tough. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 1715-1721	8.3	27
56	Fast Triggering of Shape Memory Polymers using an Embedded Carbon Nanotube Sponge Network. <i>Scientific Reports</i> , 2016 , 6, 24148	4.9	27
55	Screening-Level Life Cycle Assessment of Graphene-Poly(ether imide) Coatings Protecting Unalloyed Steel from Severe Atmospheric Corrosion. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 2656-2667	8.3	26
54	Maleic anhydride-functionalized graphene nanofillers render epoxy coatings highly resistant to corrosion and microbial attack. <i>Carbon</i> , 2020 , 159, 586-597	10.4	26
53	Ultrathin and Strong Electrospun Porous Fiber Separator. ACS Applied Energy Materials, 2018, 1, 4794-4	86.3	24
52	An Environmentally Stable and Lead-Free Chalcogenide Perovskite. <i>Advanced Functional Materials</i> , 2020 , 30, 2001387	15.6	23
51	Graphene-coated meshes for electroactive flow control devices utilizing two antagonistic functions of repellency and permeability. <i>Nature Communications</i> , 2016 , 7, 13345	17.4	23
50	A flexible carbon/sulfur-cellulose core-shell structure for advanced lithium ulfur batteries. <i>Energy Storage Materials</i> , 2018 , 15, 388-395	19.4	23
49	Theoretical and Experimental Insight into the Mechanism for Spontaneous Vertical Growth of ReS2 Nanosheets. <i>Advanced Functional Materials</i> , 2018 , 28, 1801286	15.6	23
48	Experimental Investigation of the Machinability of Epoxy Reinforced With Graphene Platelets. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2013, 135,	3.3	22
47	Short period sinusoidal thermal modulation for quantitative identification of gas species. <i>Nanoscale</i> , 2020 , 12, 220-229	7.7	22
46	Reversible Alloying of Phosphorene with Potassium and Its Stabilization Using Reduced Graphene Oxide Buffer Layers. <i>ACS Nano</i> , 2019 , 13, 14094-14106	16.7	21
45	Influence of releasing graphene oxide into a clayey sand: physical and mechanical properties. <i>RSC Advances</i> , 2017 , 7, 18060-18067	3.7	20
44	Aqueous lithium-ion batteries with niobium tungsten oxide anodes for superior volumetric and rate capability. <i>Energy Storage Materials</i> , 2020 , 27, 506-513	19.4	20
43	Catalyst-Free and Morphology-Controlled Growth of 2D Perovskite Nanowires for Polarized Light Detection. <i>Advanced Optical Materials</i> , 2019 , 7, 1900039	8.1	18

42	Nanocarbon aerogel complexes inspired by the leaf structure. Carbon, 2014, 77, 637-644	10.4	18
41	Repurposing paper by-product lignosulfonate as a sulfur donor/acceptor for high performance lithium Bulfur batteries. Sustainable Energy and Fuels, 2018, 2, 422-429	5.8	18
40	Sculpting Artificial Edges in Monolayer MoS for Controlled Formation of Surface-Enhanced Raman Hotspots. <i>ACS Nano</i> , 2020 , 14, 6258-6268	16.7	17
39	High-strain rate compressive behavior of multi-walled carbon nanotube dispersed thermoset epoxy resin. <i>Journal of Composite Materials</i> , 2015 , 49, 903-910	2.7	16
38	Improvement in fatigue life of carbon fibre reinforced polymer composites via a Nano-Silica Modified Matrix. <i>Carbon</i> , 2020 , 170, 220-224	10.4	16
37	Structural transformation and embrittlement during lithiation and delithiation cycles in an amorphous silicon electrode. <i>Acta Materialia</i> , 2019 , 175, 11-20	8.4	15
36	Graphene oxide colloidal suspensions mitigate carbon diffusion during diamond turning of steel. Journal of Manufacturing Processes, 2015 , 17, 41-47	5	13
35	Mechanical Property Enhancement of Layered Reduced Graphene Oxide Papers by Non-Covalent Modification with Terephthalic Acid. <i>Particle and Particle Systems Characterization</i> , 2014 , 31, 337-341	3.1	10
34	Sustainability of renewable fuel infrastructure: a screening LCA case study of anticorrosive graphene oxide epoxy liners in steel tanks for the storage of biodiesel and its blends. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 141-153	4.3	9
33	Localized transformation of few-layered graphene producing graphitic shells with nanoparticle cores for catalytic applications. <i>Carbon</i> , 2015 , 85, 406-413	10.4	8
32	Graphene Foams: Superhydrophobic Graphene Foams (Small 1/2013). Small, 2013, 9, 2-2	11	7
31	Graphene Foams: Superhydrophobic Graphene Foams (Small 1/2013). <i>Small</i> , 2013 , 9, 2-2 Graphene's Partial Transparency to van der Waals and Electrostatic Interactions. <i>Langmuir</i> , 2019 , 35, 12306-12316	11	7
	Graphene's Partial Transparency to van der Waals and Electrostatic Interactions. <i>Langmuir</i> , 2019 ,		
31	Graphene's Partial Transparency to van der Waals and Electrostatic Interactions. <i>Langmuir</i> , 2019 , 35, 12306-12316 Micromilling Responses of Hierarchical Graphene Composites. <i>Journal of Manufacturing Science and</i>	4	6
31	Graphene's Partial Transparency to van der Waals and Electrostatic Interactions. <i>Langmuir</i> , 2019 , 35, 12306-12316 Micromilling Responses of Hierarchical Graphene Composites. <i>Journal of Manufacturing Science and Engineering, Transactions of the ASME</i> , 2015 , 137,	4 3·3	6
31 30 29	Graphene's Partial Transparency to van der Waals and Electrostatic Interactions. <i>Langmuir</i> , 2019 , 35, 12306-12316 Micromilling Responses of Hierarchical Graphene Composites. <i>Journal of Manufacturing Science and Engineering, Transactions of the ASME</i> , 2015 , 137, Substitutional transition metal doping in MoS2: a first-principles study. <i>Nano Express</i> , 2020 , 1, 010008 Recent advances in the mitigation of dendrites in lithium-metal batteries. <i>Journal of Applied Physics</i>	3.3	6 6
31 30 29 28	Graphene's Partial Transparency to van der Waals and Electrostatic Interactions. <i>Langmuir</i> , 2019 , 35, 12306-12316 Micromilling Responses of Hierarchical Graphene Composites. <i>Journal of Manufacturing Science and Engineering, Transactions of the ASME</i> , 2015 , 137, Substitutional transition metal doping in MoS2: a first-principles study. <i>Nano Express</i> , 2020 , 1, 010008 Recent advances in the mitigation of dendrites in lithium-metal batteries. <i>Journal of Applied Physics</i> , , 2020 , 128, 010903	3.3	6 6 6

24	ESSENCE - A rapid, shear-enhanced, flow-through, capacitive electrochemical platform for rapid detection of biomolecules. <i>Biosensors and Bioelectronics</i> , 2021 , 182, 113163	11.8	6
23	Heterogeneity-induced mesoscale toughening in polymer nanocomposites. <i>Materialia</i> , 2020 , 11, 10067	33.2	5
22	Local ferroelectric polarization in antiferroelectric chalcogenide perovskite BaZrS3 thin films. <i>Physical Review B</i> , 2020 , 102,	3.3	4
21	Sensible graphene oxide differentiates macrophages and : a bio-nano interplay in attenuating intracellular parasite <i>RSC Advances</i> , 2020 , 10, 27502-27511	3.7	4
20	A dual-ion accepting vanadium carbide nanowire cathode integrated with carbon cloths for high cycling stability. <i>Nanoscale</i> , 2020 , 12, 20868-20874	7.7	4
19	Bandgap Tuning in BaZrS3 Perovskite Thin Films. ACS Applied Electronic Materials, 2021, 3, 3306-3312	4	4
18	Reversing fatigue in carbon-fiber reinforced vitrimer composites. <i>Carbon</i> , 2022 , 187, 108-114	10.4	3
17	Corrosion Resistance of Sulfur-Selenium Alloy Coatings. <i>Advanced Materials</i> , 2021 , e2104467	24	3
16	Orientation-Controlled Large-Area Epitaxial PbI Thin Films with Tunable Optical Properties. <i>ACS Applied Materials & Description (Note: Applied Materials & Description (Note:</i>	9.5	3
15	Phase transformation and enhanced blue photoluminescence of zirconium oxide poly-crystalline thin film induced by Ni ion beam irradiation. <i>Scientific Reports</i> , 2021 , 11, 17672	4.9	3
14	Alloying of Alkali Metals with Tellurene. Advanced Energy Materials, 2021, 11, 2003248	21.8	3
13	Graphene Films: Wetting-Transparent Graphene Films for Hydrophobic Water-Harvesting Surfaces (Adv. Mater. 30/2014). <i>Advanced Materials</i> , 2014 , 26, 5070-5070	24	2
12	Experimental Investigation of the Machinability of Epoxy Reinforced With Graphene Platelets 2012,		2
11	Depth sensing indentation of nanoscale graphene platelets in nanocomposite thin films. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1312, 1		2
10	Controlled Re doping in MoS2 by chemical vapor deposition. <i>Inorganic Chemistry Communication</i> , 2021 , 123, 108329	3.1	2
9	Examining the electron transport in chalcogenide perovskite BaZrS3. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 3892-3900	7.1	2
8	Quantifying a scientist's intellectual leadership. <i>Carbon</i> , 2019 , 150, 485-488	10.4	1
7	Analysis of Deposition Methods for Lithium-Ion Battery Anodes Using Reduced Graphene Oxide Slurries on Copper Foil. <i>Journal of Manufacturing Science and Engineering, Transactions of the ASME</i> , 2018 , 140,	3.3	1

LIST OF PUBLICATIONS

6	Graphene Oxide: Controlled Crumpling of Graphene Oxide Films for Tunable Optical Transmittance (Adv. Mater. 21/2015). <i>Advanced Materials</i> , 2015 , 27, 3222-3222	24	1
5	Virtual alternating current measurements advance semiconductor gas sensors performance in the internet of things. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	0
4	Oxygen Reduction Reaction with Manganese Oxide Nanospheres in Microbial Fuel Cells <i>ACS Omega</i> , 2022 , 7, 11777-11787	3.9	0
3	Bio-Nanocomposite Coatings: Multifunctional Bio-Nanocomposite Coatings for Perishable Fruits (Adv. Mater. 26/2020). <i>Advanced Materials</i> , 2020 , 32, 2070199	24	
2	Nano-engineered Silicon Anodes for Lithium-Ion Rechargeable Batteries. <i>Nanostructure Science and Technology</i> , 2012 , 43-66	0.9	
1	NANOSCALE FIELD IONIZATION SENSORS: A REVIEW. <i>International Journal of Nanoscience</i> , 2005 , 04, 945-949	0.6	