Shun-ichi Ishiuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4349211/publications.pdf

Version: 2024-02-01

113 papers	2,309 citations	29 h-index	276775 41 g-index
116	116	116	1177 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Gas phase protonated nicotine is a mixture of pyridine- and pyrrolidine-protonated conformers: implications for its native structure in the nicotinic acetylcholine receptor. Physical Chemistry Chemical Physics, 2022, 24, 5786-5793.	1.3	8
2	Excited state dynamics of protonated dopamine: hydration and conformation effects. Physical Chemistry Chemical Physics, 2022, 24, 10737-10744.	1.3	2
3	Collision-assisted stripping for determination of microsolvation-dependent protonation sites in hydrated clusters by cryogenic ion trap infrared spectroscopy: the case of benzocaineH ⁺ (H ₂ O) _{<i>n</i>>/i>} . Physical Chemistry Chemical Physics, 2022, 24, 5774-5779.	1.3	11
4	Stepwise dissociation of ion pairs by water molecules: cation-dependent separation mechanisms between carboxylate and alkali-earth metal ions. Physical Chemistry Chemical Physics, 2022, 24, 12121-12125.	1.3	4
5	Cryogenic ion spectroscopy of adenine complexes containing alkali metal cations. Physical Chemistry Chemical Physics, 2021, 23, 6783-6790.	1.3	2
6	Rethinking Ion Transport by Ionophores: Experimental and Computational Investigation of Single Water Hydration in Valinomycin-K ⁺ Complexes. Journal of Physical Chemistry Letters, 2021, 12, 1754-1758.	2.1	16
7	Potassium and sodium ion complexes with a partial peptide of the selectivity filter in K ⁺ channels studied by cold ion trap infrared spectroscopy: the effect of hydration. Physical Chemistry Chemical Physics, 2021, 23, 12045-12050.	1.3	7
8	Hydration-controlled excited-state relaxation in protonated dopamine studied by cryogenic ion spectroscopy. Journal of Chemical Physics, 2021, 155, 151101.	1.2	4
9	Double Ion Trap Laser Spectroscopy of Alkali Metal Ion Complexes with a Partial Peptide of the Selectivity Filter in K ⁺ Channelsa"€Temperature Effect and Barrier for Conformational Conversions. Journal of Physical Chemistry A, 2021, 125, 9609-9618.	1.1	12
10	Biomolecular Interactions Probed by Cold Ion Spectroscopy. Seibutsu Butsuri, 2021, 61, 382-384.	0.0	О
11	Cryogenic Ion Spectroscopy of a Singly Protonated Peptide DYYVVR: Locating Phosphorylation Sites of a Kinase Domain. Journal of Physical Chemistry Letters, 2020, 11, 7103-7108.	2.1	6
12	Chiral discrimination between tyrosine and \hat{l}^2 -cyclodextrin revealed by cryogenic ion trap infrared spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 24887-24894.	1.3	15
13	Alkali and Alkaline Earth Metal Ions Complexes with a Partial Peptide of the Selectivity Filter in K + Channels Studied by a Cold Ion Trap Infrared Spectroscopy. ChemPhysChem, 2020, 21, 687-687.	1.0	О
14	Alkali and Alkaline Earth Metal Ions Complexes with a Partial Peptide of the Selectivity Filter in K ⁺ Channels Studied by a Cold Ion Trap Infrared Spectroscopy. ChemPhysChem, 2020, 21, 712-724.	1.0	17
15	Excited-state proton transfer in protonated adrenaline revealed by cryogenic UV photodissociation spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 11498-11507.	1.3	4
16	Excited state hydrogen transfer dynamics in phenol–(NH ₃) ₂ studied by picosecond UV-near IR-UV time-resolved spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 5740-5748.	1.3	4
17	lonization-Induced π → H Site Switching in Resorcinol–Ar _{<i>n</i>} (<i>n</i> = 1 and 2) Clusters Probed by Infrared Spectroscopy. Journal of Physical Chemistry A, 2019, 123, 6828-6839.	1.1	2
18	Probing the selectivity of Li ⁺ and Na ⁺ cations on noradrenaline at the molecular level. Faraday Discussions, 2019, 217, 396-413.	1.6	3

#	Article	IF	CITATIONS
19	lon–peptide interactions between alkali metal ions and a termini-protected dipeptide: modeling a portion of the selectivity filter in K ⁺ channels. Physical Chemistry Chemical Physics, 2019, 21, 561-571.	1.3	21
20	Can the Partial Peptide SIVSF of the $\hat{1}^2$ sub>2-Adrenergic Receptor Recognize Chirality of the Epinephrine Neurotransmitter?. Journal of Physical Chemistry Letters, 2019, 10, 2470-2474.	2.1	13
21	Molecular Recognition by a Short Partial Peptide of the Adrenergic Receptor: A Bottomâ€Up Approach. Angewandte Chemie - International Edition, 2018, 57, 5626-5629.	7.2	26
22	Stereochemistry-dependent structure of hydrogen-bonded protonated dimers: the case of 1-amino-2-indanol. Physical Chemistry Chemical Physics, 2018, 20, 12430-12443.	1.3	10
23	Cation-Size-Dependent Conformational Locking of Glutamic Acid by Alkali Ions: Infrared Photodissociation Spectroscopy of Cryogenic Ions. Journal of Physical Chemistry B, 2018, 122, 2295-2306.	1.2	5
24	Innentitelbild: Molecular Recognition by a Short Partial Peptide of the Adrenergic Receptor: A Bottom-Up Approach (Angew. Chem. 20/2018). Angewandte Chemie, 2018, 130, 5658-5658.	1.6	0
25	Molecular Recognition by a Short Partial Peptide of the Adrenergic Receptor: A Bottomâ€Up Approach. Angewandte Chemie, 2018, 130, 5728-5731.	1.6	3
26	Probing chirality recognition of protonated glutamic acid dimers by gas-phase vibrational spectroscopy and first-principles simulations. Physical Chemistry Chemical Physics, 2018, 20, 28452-28464.	1.3	19
27	Entropic effects make a more tightly folded conformer of a \hat{l}^2 -amino acid less stable: UV-UV hole burning and IR dip spectroscopy of $\frac{1}{\sqrt{2}}$ sup $\frac{3}{\sqrt{2}}$ homotryptophan using a laser desorption supersonic jet technique. Physical Chemistry Chemical Physics, 2018, 20, 19979-19986.	1.3	3
28	Conformation of protonated glutamic acid at room and cryogenic temperatures. Physical Chemistry Chemical Physics, 2017, 19, 10767-10776.	1.3	16
29	A conformational study of protonated noradrenaline by UV–UV and IR dip double resonance laser spectroscopy combined with an electrospray and a cold ion trap method. Physical Chemistry Chemical Physics, 2017, 19, 10777-10785.	1.3	27
30	High-cooling-efficiency cryogenic quadrupole ion trap and UV-UV hole burning spectroscopy of protonated tyrosine. Journal of Molecular Spectroscopy, 2017, 332, 45-51.	0.4	65
31	Effective Strategy for Conformer-Selective Detection of Short-Lived Excited State Species: Application to the IR Spectroscopy of the N1H Keto Tautomer of Guanine. Journal of Physical Chemistry A, 2016, 120, 2179-2184.	1.1	8
32	Gas phase ultraviolet and infrared spectroscopy on a partial peptide of \hat{l}^2 (sub>2-adrenoceptor SIVSF-NH ₂ by a laser desorption supersonic jet technique. Physical Chemistry Chemical Physics, 2016, 18, 23277-23284.	1.3	19
33	Anharmonic Vibrational Analyses of Pentapeptide Conformations Explored with Enhanced Sampling Simulations. Journal of Physical Chemistry B, 2016, 120, 10199-10213.	1.2	11
34	Structural motifs of 2-(2-fluoro-phenyl)-ethylamine conformers. Physical Chemistry Chemical Physics, 2016, 18, 1191-1201.	1.3	10
35	Spectroscopic study of jet-cooled indole-3-carbinol by laser desorption technique: Franck–Condon simulations and anharmonic calculations. Chemical Physics Letters, 2015, 638, 237-243.	1.2	2
36	Gas Phase Spectroscopy of Catecholamines and Relevant Molecules by Laser Desorption Supersonic Jet Technique. Molecular Science, 2015, 9, A0075.	0.2	0

3

#	Article	IF	CITATIONS
37	Mass analyzed threshold ionization detected infrared spectroscopy: isomerization activity of the phenol–Ar cluster near the ionization threshold. Physical Chemistry Chemical Physics, 2015, 17, 2494-2503.	1.3	12
38	UV–UV hole burning and IR dip spectroscopy of homophenylalanine by laser desorption supersonic jet technique. Chemical Physics, 2014, 445, 21-30.	0.9	9
39	lonization-induced π → H site-switching in phenol–CH ₄ complexes studied using IR dip spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 110-116.	1.3	13
40	Fast Nonradiative Decay in <i>o</i> -Aminophenol. Journal of Physical Chemistry A, 2014, 118, 2056-2062.	1.1	20
41	Solvent Migration in Microhydrated Aromatic Aggregates: Ionizationâ€Induced Site Switching in the 4â€Aminobenzonitrile–Water Cluster. Chemistry - A European Journal, 2014, 20, 2031-2039.	1.7	21
42	Structure of 1-naphtholâ€"water clusters in the S1 state studied by UVâ€"IR fluorescence dip spectroscopy and ab initio molecular orbital calculations. Chemical Physics Letters, 2013, 557, 19-25.	1.2	4
43	Unusual Behavior in the First Excited State Lifetime of Catechol. Journal of Physical Chemistry Letters, 2013, 4, 3819-3823.	2.1	23
44	Revised conformational assignments and conformational evolution of tyrosine by laser desorption supersonic jet laser spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 5163.	1.3	39
45	Gas-phase spectroscopy and anharmonic vibrational analysis of the 3-residue peptide Z-Pro-Leu-Gly-NH2 by the laser desorption supersonic jet technique. Chemical Physics, 2013, 419, 145-152.	0.9	13
46	Conformationally resolved spectra of acetaminophen by UV-UV hole burning and IR dip spectroscopy in the gas phase. Physical Chemistry Chemical Physics, 2013, 15, 957-964.	1.3	18
47	IR Spectroscopy of the 4â€Aminobenzonitrile–Ar Cluster in the S 0 , S 1 Neutral and D 0 Cationic States. ChemPhysChem, 2013, 14, 741-745.	1.0	13
48	Ground State Proton Transfer in Phenol–(NH ₃) _{<i>n</i>} (<i>n</i> ≶1) Clusters Studied by Mid-IR Spectroscopy in 3–10 μm Range. Journal of Physical Chemistry A, 2013, 117, 1522-1530.	1.1	30
49	Microsolvation of the 4â€Aminobenzonitrile Cation (ABN +) in a Nonpolar Solvent: IR Spectra of ABN + L n (L=Ar and N 2 , n â‰ 4). ChemPhysChem, 2013, 14, 728-740.	1.0	17
50	Imaging of Polycyclic Aromatic Hydrocarbons by Means of Sputtered Neutrals Mass Spectrometry Using a Diode-pumped Solid-State Laser. Analytical Sciences, 2013, 29, 291-295.	0.8	7
51	Laser Desorption Supersonic Jet Spectroscopy of Octopamine by Its Hydrochloride Salt. Chemistry Letters, 2013, 42, 1166-1167.	0.7	5
52	A two-color tunable infrared/vacuum ultraviolet spectrometer for high-resolution spectroscopy of molecules in molecular beams. Review of Scientific Instruments, 2012, 83, 014102.	0.6	5
53	Gas phase IR spectra of tri-peptide Z-Pro-Leu-Gly: Effect of C-terminal amide capping on secondary structure. Chemical Physics Letters, 2012, 531, 41-45.	1.2	15
54	Photoionization-induced large-amplitude pendular motion in phenol ⁺ –Kr. Physical Chemistry Chemical Physics, 2011, 13, 2744-2747.	1.3	32

#	Article	IF	CITATIONS
55	Conformational reduction of DOPA in the gas phase studied by laser desorption supersonic jet laser spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 7812.	1.3	23
56	Gas-Phase Spectroscopy of Synephrine by Laser Desorption Supersonic Jet Technique. Journal of Physical Chemistry A, 2011, 115, 10363-10369.	1.1	29
57	lonization-induced π → H site switching dynamics in phenol–Ar ₃ . Physical Chemistry Chemical Physics, 2011, 13, 2409-2416.	1.3	37
58	Gas-phase Infrared Spectroscopy of Monopeptides from 10 to 3 µm. Chemistry Letters, 2011, 40, 1157-1158.	0.7	3
59	Static and Dynamic Structures of Phenol/Ar Clusters Studied by Multiresonance Laser Spectroscopy. Bulletin of the Chemical Society of Japan, 2011, 84, 1151-1168.	2.0	2
60	Isomerization reaction in high-n Rydberg states of phenol–Ar/Kr clusters measured by autoionization detected infrared spectroscopy. Chemical Physics Letters, 2011, 513, 208-211.	1.2	16
61	Holeâ€Burning Spectra of <i>m</i> â€Fluorophenol/Ammonia (1:3) Clusters and Their Excited State Hydrogen Transfer Dynamics. ChemPhysChem, 2011, 12, 1928-1934.	1.0	10
62	Measurement of adiabatic ionization energies of the rotational isomers of n-propylbenzene and m-fluorophenol by direct VUV laser photoionization. Chemical Physics Letters, 2010, 485, 31-35.	1.2	1
63	Dissociation energetics of the phenol+â√Ar2 cluster ion: The role of π→H isomerization. Journal of Chemical Physics, 2010, 133, 154308.	1.2	42
64	Evidence for Catechol Ring- Induced Conformational Restriction in Neurotransmitters. Journal of Physical Chemistry Letters, 2010, 1, 1130-1133.	2.1	39
65	Structural Evolution of (1-NpOH)nClusters Studied by R2PI and IR Dip Spectroscopiesâ€. Journal of Physical Chemistry A, 2010, 114, 11210-11215.	1.1	12
66	IR spectra of resorcinol+–Ar cluster cations (n= 1, 2): Evidence for photoionization-induced π → H isomerization. Chemical Physics Letters, 2009, 474, 7-12.	1.2	18
67	In Situ, Fast-response, Molecular-selective Methods for Measuring Emission Factors of Volatile Organic Compounds (VOCs) into the Atmosphere. Chemistry Letters, 2009, 38, 74-75.	0.7	4
68	The most stable conformer of benzyl alcohol. Chemical Physics Letters, 2008, 466, 21-26.	1.2	22
69	Vibrational Signature of the Conformers in Tyramine Studied by IR Dip and Dispersed Fluorescence Spectroscopies. Journal of Physical Chemistry A, 2008, 112, 13463-13469.	1.1	27
70	Electronic spectra of 7-azaindole/ammonia clusters and their photochemical reactivity. Journal of Chemical Physics, 2008, 129, 104311.	1.2	33
71	Development of High Sensitive On-Line Laser Ionization Mass Spectrometer for Environmental Hazardous Organic Compounds. Bunseki Kagaku, 2008, 57, 227-237.	0.1	2
72	Real-Time and Direct Measurement of Pollutants in Exhaust Gas Utilizing Supersonic Jet / Resonance Enhanced Multi-Photon Ionization. , 2008, , .		2

#	Article	IF	Citations
73	Hydrogen transfer dynamics in a photoexcited phenol/ammonia (1:3) cluster studied by picosecond time-resolved UV-IR-UV ion dip spectroscopy. Journal of Chemical Physics, 2007, 127, 234304.	1.2	39
74	IR signature of the photoionization-induced hydrophobicâ†'hydrophilic site switching in phenol-Arn clusters. Journal of Chemical Physics, 2007, 127, 114307.	1.2	58
75	Vibrational OH-Stretching Overtone Spectroscopy of Jet-Cooled Resorcinol and Hydroquinone Rotamers. Journal of Physical Chemistry A, 2007, 111, 6028-6033.	1.1	14
76	Structure of the Jet-Cooled 1-Naphthol Dimer Studied by IR Dip Spectroscopy: Cooperation between the Ï€â^Ï€ Interaction and the Hydrogen Bonding. Journal of Physical Chemistry A, 2007, 111, 1001-1005.	1.1	26
77	Hole-Burning Spectra of Phenolâ^'Arn(n= 1, 2) Clusters: Resolution of the Isomer Issueâ€. Journal of Physical Chemistry A, 2007, 111, 7569-7575.	1.1	40
78	IR spectra of phenol+–Krn cluster cations (n=1,2): Evidence for photoionization-induced π→H isomerization. Chemical Physics Letters, 2007, 443, 227-231.	1.2	34
79	Excited state hydrogen transfer in fluorophenol·ammonia clusters studied by two-color REMPI spectroscopy. Physical Chemistry Chemical Physics, 2006, 8, 114-121.	1.3	36
80	Vibrational Overtone Spectroscopy of Phenol and Its Deuterated Isotopomers. Journal of Physical Chemistry A, 2006, 110, 7345-7354.	1.1	38
81	Development of a Supercritical Fluid Jet Technique for Supersonic Jet Laser Spectroscopy of Nonvolatile and Pyrolytic Molecules. Chemistry Letters, 2006, 35, 1044-1045.	0.7	3
82	Analysis of a fluorescence depletion process of Rhodamine 6G in a PMMA matrix induced by nano- and picosecond lasers. Chemical Physics Letters, 2006, 420, 410-415.	1.2	14
83	Development of Real Time Monitoring Apparatus Based on Jet-REMPI Technique for the Determination of Hazardous Organic Compounds. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2006, 92, 262-267.	0.1	0
84	A New, Highly Sensitive Time-of-Flight Mass Spectrometer Consisting of a Flangeon-type Conical Ion Lens System and a Proto-type Daly Detector for Exhaust Gas Analysis Based on the Jet-REMPI Technique. Analytical Sciences, 2005, 21, 991-996.	0.8	32
85	Pulsed field ionisationâ€"ZEKE photoelectron spectrum of o-, m- and p-tolunitrile. Journal of Electron Spectroscopy and Related Phenomena, 2005, 142, 215-221.	0.8	16
86	Real-Time Observation of Ionization-Induced Hydrophobicâ†'Hydrophilic Switching. Angewandte Chemie - International Edition, 2005, 44, 6149-6151.	7.2	72
87	Four-color hole burning spectra of phenol/ammonia 1:3 and 1:4 clusters. Journal of Chemical Physics, 2004, 120, 3215-3220.	1.2	25
88	Vibrational Overtone Spectroscopy of Jet-Cooled Aminophenols as a Probe for Rotational Isomers. Journal of Physical Chemistry A, 2004, 108, 4420-4427.	1.1	28
89	Two-color far-field super-resolution microscope using a doughnut beam. Chemical Physics Letters, 2003, 371, 634-639.	1.2	41
90	Investigation of the fluorescence depletion process in the condensed phase; application to a tryptophan aqueous solution. Chemical Physics Letters, 2003, 372, 773-778.	1.2	30

#	Article	IF	CITATIONS
91	Predicted Spatial Resolution of Super-Resolving Fluorescence Microscopy Using Two-Color Fluorescence Dip Spectroscopy. Applied Spectroscopy, 2003, 57, 1312-1316.	1.2	19
92	Pulsed field ionization-ZEKE spectroscopy of 4-aminobenzonitrile–H2O. Hydrogen-bonding interaction in the amino site. Physical Chemistry Chemical Physics, 2003, 5, 1775-1779.	1.3	14
93	Photochemistry of phenol–(NH3)n clusters: Solvent effect on a radical cleavage of an OH bond in an electronically excited state and intracluster reactions in the product NH4(NH3)nâ^'1 (n⩽5). Journal of Chemical Physics, 2003, 119, 5149-5158.	1.2	46
94	Super-resolution Fluorescence Microscopy in Nano-meter Scale Region Using Two-color Laser Beams. Hyomen Kagaku, 2003, 24, 392-399.	0.0	0
95	Hydrogen transfer in photo-excited phenol/ammonia clusters by UV–IR–UV ion dip spectroscopy and ab initio molecular orbital calculations. II. Vibrational transitions. Journal of Chemical Physics, 2002, 117, 7083-7093.	1.2	47
96	Hydrogen transfer in photoexcited phenol/ammonia clusters by UV–IR–UV ion dip spectroscopy and ab initio molecular orbital calculations. I. Electronic transitions. Journal of Chemical Physics, 2002, 117, 7077-7082.	1.2	65
97	OH- and CH-Stretching Overtone Spectra of Catechol. Journal of Physical Chemistry A, 2002, 106, 258-266.	1.1	72
98	The PFI-ZEKE photoelectron spectrum of m-fluorophenol and its aqueous complexes: Comparing intermolecular vibrations in rotational isomers. Physical Chemistry Chemical Physics, 2002, 4, 2534-2538.	1.3	30
99	IR-dip and IR–UV hole-burning spectra of jet-cooled 4-aminobenzonitrile–(H2O)1. Observation of π-type and ΃-type hydrogen-bonded conformers in the CN site. Chemical Physics, 2002, 283, 209-219.	0.9	31
100	Structure of 1-Naphthol/Alcohol Clusters Studied by IR Dip Spectroscopy and ab Initio Molecular Orbital Calculations. Journal of Physical Chemistry A, 2001, 105, 10045-10053.	1.1	34
101	Structures of Carbazolea $^{\circ}$ (H2O)n (n = $1a^{\circ}$ 3) Clusters Studied by IR Dip Spectroscopy and a Quantum Chemical Calculation. Journal of Physical Chemistry A, 2001, 105, 8651-8657.	1.1	15
102	Structure of Hydrogen-Bonded Clusters of 7-Azaindole Studied by IR Dip Spectroscopy and ab Initio Molecular Orbital Calculation. Journal of Physical Chemistry A, 2001, 105, 9366-9374.	1.1	76
103	Electronic and infrared spectra of jet-cooled 4-aminobenzonitrile-H2O. Change of NH2 from proton acceptor to proton donor by CN substitution. Chemical Physics Letters, 2001, 341, 70-76.	1.2	29
104	Picosecond time-resolved infrared spectra of photo-excited phenol–(NH3)3 cluster. Chemical Physics Letters, 2001, 347, 87-92.	1.2	49
105	Structural characterization of the acridine–(H2O) (n=1–3) clusters by fluorescence-detected infrared spectroscopy. Chemical Physics Letters, 2000, 317, 211-219.	1.2	12
106	Internal methyl group rotation in o-cresol studied by pulsed field ionization-ZEKE photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2000, 108, 13-20.	0.8	18
107	Infrared dip spectra of photochemical reaction products in a phenol/ammonia cluster: examination of intracluster hydrogen transfer. Chemical Physics Letters, 2000, 322, 27-32.	1.2	53
108	Pulsed field ionization-ZEKE spectroscopy of cresoles and their aqueous complexes: Internal rotation of methyl group and intermolecular vibrations. Faraday Discussions, 2000, 115, 229-243.	1.6	17

#	Article	IF	Citations
109	Structure and Dynamics of 9(10H)-Acridone and Its Hydrated Clusters. II. Structural Characterization of Hydrogen-Bonding Networks. Journal of Physical Chemistry A, 2000, 104, 8649-8659.	1.1	10
110	Nonresonant ionization detected IR spectrum of jet-cooled phenol. Ionization mechanism and its application to overtone spectroscopy. Chemical Physics Letters, 1998, 283, 243-250.	1.2	58
111	Structure of 1-Naphtholâ^'Water Clusters Studied by IR Dip Spectroscopy and Ab Initio Molecular Orbital Calculations. Journal of Physical Chemistry A, 1998, 102, 6227-6233.	1.1	59
112	Overtone spectroscopy of jet-cooled phenol studied by nonresonant ionization detected IR spectroscopy. , $1998, , .$		1
113	Real-time Analysis of Benzene in Exhaust Gas from Driving Automobiles Using Jet-REMPI Method. , 0, , .		1