
TomÃ;Å; Etrych

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/434842/publications.pdf Version: 2024-02-01

ΤομΑ̃:Δ: Ετργομ

#	Article	IF	CITATIONS
1	In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nature Biotechnology, 2015, 33, 1201-1210.	17.5	362
2	New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: synthesis and preliminary in vitro and in vivo biological properties. Journal of Controlled Release, 2001, 73, 89-102.	9.9	319
3	Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials, 2010, 31, 7797-7804.	11.4	241
4	HPMA copolymers with pH-controlled release of doxorubicin. Journal of Controlled Release, 2003, 87, 33-47.	9.9	196
5	Biodegradable star HPMA polymer–drug conjugates: Biodegradability, distribution and anti-tumor efficacy. Journal of Controlled Release, 2011, 154, 241-248.	9.9	167
6	Nanomedicines for Inflammatory Arthritis: Head-to-Head Comparison of Glucocorticoid-Containing Polymers, Micelles, and Liposomes. ACS Nano, 2014, 8, 458-466.	14.6	133
7	Synthesis of HPMA Copolymers Containing Doxorubicin Bound via a Hydrazone Linkage. Effect of Spacer on Drug Release and in vitro Cytotoxicity. Macromolecular Bioscience, 2002, 2, 43-52.	4.1	127
8	Effect of physicochemical modification on the biodistribution and tumor accumulation of HPMA copolymers. Journal of Controlled Release, 2005, 110, 103-118.	9.9	125
9	New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting. Journal of Controlled Release, 2008, 127, 121-130.	9.9	123
10	N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. European Journal of Pharmaceutical Sciences, 2010, 41, 473-482.	4.0	120
11	Antibody-targeted Polymer–doxorubicin Conjugates with pH-controlled Activation. Journal of Drug Targeting, 2004, 12, 477-489.	4.4	119
12	Polymer-coated polyethylenimine/DNA complexes designed for triggered activation by intracellular reduction. Journal of Gene Medicine, 2004, 6, 337-344.	2.8	117
13	HPMA copolymer-doxorubicin conjugates: The effects of molecular weight and architecture on biodistribution and in vivo activity. Journal of Controlled Release, 2012, 164, 346-354.	9.9	116
14	HPMA Copolymer Conjugates of Paclitaxel and Docetaxel with pH-Controlled Drug Release. Molecular Pharmaceutics, 2010, 7, 1015-1026.	4.6	113
15	Intrinsically active nanobody-modified polymeric micelles for tumor-targeted combination therapy. Biomaterials, 2013, 34, 1255-1260.	11.4	111
16	Fluorescence optical imaging in anticancer drug delivery. Journal of Controlled Release, 2016, 226, 168-181.	9.9	107
17	<i>Nâ€</i> (2â€hydroxypropyl)methacrylamideâ€based polymer conjugates with pHâ€controlled activation of doxorubicin. I. New synthesis, physicochemical characterization and preliminary biological evaluation. Journal of Applied Polymer Science, 2008, 109, 3050-3061.	2.6	105
18	Doxorubicin bound to a HPMA copolymer carrier through hydrazone bond is effective also in a cancer cell line with a limited content of lysosomes. Journal of Controlled Release, 2001, 74, 225-232.	9.9	103

ТомÃіÅі Еткусн

#	Article	IF	CITATIONS
19	Noninvasive Optical Imaging of Nanomedicine Biodistribution. ACS Nano, 2013, 7, 252-262.	14.6	102
20	Two step mechanisms of tumor selective delivery of N-(2-hydroxypropyl)methacrylamide copolymer conjugated with pirarubicin via an acid-cleavable linkage. Journal of Controlled Release, 2014, 174, 81-87.	9.9	98
21	Properties of HPMA copolymer–doxorubicin conjugates with pH-controlled activation: Effect of polymer chain modification. Journal of Controlled Release, 2006, 115, 26-36.	9.9	95
22	Biodegradable star HPMA polymer conjugates of doxorubicin for passive tumor targeting. European Journal of Pharmaceutical Sciences, 2011, 42, 527-539.	4.0	94
23	Conjugates of doxorubicin with graft HPMA copolymers for passive tumor targeting. Journal of Controlled Release, 2008, 132, 184-192.	9.9	93
24	HPMA-based polymer conjugates with drug combination. European Journal of Pharmaceutical Sciences, 2009, 37, 405-412.	4.0	85
25	Augmentation of the Enhanced Permeability and Retention Effect with Nitric Oxide–Generating Agents Improves the Therapeutic Effects of Nanomedicines. Molecular Cancer Therapeutics, 2018, 17, 2643-2653.	4.1	83
26	Polymeric anticancer drugs with pH-controlled activation. International Journal of Pharmaceutics, 2004, 277, 63-72.	5.2	79
27	HPMA Copolymer-Conjugated Pirarubicin in Multimodal Treatment of a Patient with Stage IV Prostate Cancer and Extensive Lung and Bone Metastases. Targeted Oncology, 2016, 11, 101-106.	3.6	75
28	Cell-Penetrating Peptides: a Useful Tool for the Delivery of Various Cargoes Into Cells. Physiological Research, 2018, 67, S267-S279.	0.9	73
29	Differences in the intracellular fate of free and polymer-bound doxorubicin. Journal of Controlled Release, 2002, 80, 101-117.	9.9	68
30	Chemotherapy based on HPMA copolymer conjugates with pH-controlled release of doxorubicin triggers anti-tumor immunity. Journal of Controlled Release, 2005, 110, 119-129.	9.9	66
31	Polymer conjugates of doxorubicin bound through an amide and hydrazone bond: Impact of the carrier structure onto synergistic action in the treatment of solid tumours. European Journal of Pharmaceutical Sciences, 2014, 58, 1-12.	4.0	65
32	Star Structure of Antibody-Targeted HPMA Copolymer-Bound Doxorubicin:Â A Novel Type of Polymeric Conjugate for Targeted Drug Delivery with Potent Antitumor Effect. Bioconjugate Chemistry, 2002, 13, 206-215.	3.6	64
33	Cytostatic and immunomobilizing activities of polymer-bound drugs: experimental and first clinical data. Journal of Controlled Release, 2003, 91, 1-16.	9.9	64
34	Biological Evaluation of Polymeric Micelles with Covalently Bound Doxorubicin. Bioconjugate Chemistry, 2009, 20, 2090-2097.	3.6	63
35	Star-shaped immunoglobulin-containing HPMA-based conjugates with doxorubicin for cancer therapy. Journal of Controlled Release, 2007, 122, 31-38.	9.9	62
36	Dual Fluorescent HPMA Copolymers for Passive Tumor Targeting with pH-Sensitive Drug Release: Synthesis and Characterization of Distribution and Tumor Accumulation in Mice by Noninvasive Multispectral Optical Imaging. Biomacromolecules, 2012, 13, 652-663.	5.4	61

ТомÃіÅі Еткусн

#	Article	IF	CITATIONS
37	HPMA Copolymer–Drug Conjugates with Controlled Tumorâ€6pecific Drug Release. Macromolecular Bioscience, 2018, 18, 1700209.	4.1	61
38	Overcoming multidrug resistance using folate receptor-targeted and pH-responsive polymeric nanogels containing covalently entrapped doxorubicin. Nanoscale, 2017, 9, 10404-10419.	5.6	58
39	Combination chemotherapy using core-shell nanoparticles through the self-assembly of HPMA-based copolymers and degradable polyester. Journal of Controlled Release, 2013, 165, 153-161.	9.9	57
40	Preclinical Evaluation of Linear HPMA-Doxorubicin Conjugates with pH-Sensitive Drug Release: Efficacy, Safety, and Immunomodulating Activity in Murine Model. Pharmaceutical Research, 2010, 27, 200-208.	3.5	56
41	Polyelectrolyte complex formation and stability when mixing polyanions and polycations in salted media: A model study related to the case of body fluids. European Journal of Pharmaceutical Sciences, 2005, 25, 281-288.	4.0	53
42	Overcoming cellular multidrug resistance using classical nanomedicine formulations. European Journal of Pharmaceutical Sciences, 2012, 45, 421-428.	4.0	53
43	HPMA copolymer-bound doxorubicin targeted to tumor-specific antigen of BCL1 mouse B cell leukemia. Journal of Controlled Release, 2003, 92, 315-330.	9.9	51
44	Macromolecular HPMA-Based Nanoparticles with Cholesterol for Solid-Tumor Targeting: Detailed Study of the Inner Structure of a Highly Efficient Drug Delivery System. Biomacromolecules, 2012, 13, 2594-2604.	5.4	51
45	Starlike vs. classic macromolecular prodrugs: two different antibody-targeted HPMA copolymers of doxorubicin studied in vitro and in vivo as potential anticancer drugs. Pharmaceutical Research, 2003, 20, 1558-1564.	3.5	50
46	HPMA copolymers containing doxorubicin bound by a proteolytically or hydrolytically cleavable bond: comparison of biological properties in vitro. Journal of Controlled Release, 2004, 99, 301-314.	9.9	48
47	Dual fluorescent HPMA copolymers for passive tumor targeting with pH-sensitive drug release II: Impact of release rate on biodistribution. Journal of Controlled Release, 2013, 172, 504-512.	9.9	47
48	Augmentation of EPR Effect and Efficacy of Anticancer Nanomedicine by Carbon Monoxide Generating Agents. Pharmaceutics, 2019, 11, 343.	4.5	46
49	Polymeric Nanogels as Drug Delivery Systems. Physiological Research, 2018, 67, S305-S317.	0.9	45
50	HPMA copolymer conjugates with reduced anti-CD20 antibody for cell-specific drug targeting. I. Synthesis and in vitro evaluation of binding efficacy and cytostatic activity. Journal of Controlled Release, 2009, 140, 18-26.	9.9	44
51	Comparison between linear and star-like HPMA conjugated pirarubicin (THP) in pharmacokinetics and antitumor activity in tumor bearing mice. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 90, 90-96.	4.3	43
52	Overcoming multidrug resistance via simultaneous delivery of cytostatic drug and P-glycoprotein inhibitor to cancer cells by HPMA copolymer conjugate. Biomaterials, 2017, 115, 65-80.	11.4	43
53	HPMA Copolymer-Based Nanomedicines in Controlled Drug Delivery. Journal of Personalized Medicine, 2021, 11, 115.	2.5	40
54	Hydrolytically Degradable Polymer Micelles for Drug Delivery: A SAXS/SANS Kinetic Study. Biomacromolecules, 2013, 14, 4061-4070.	5.4	39

ТомÃіÅі Еткусн

#	Article	IF	CITATIONS
55	PCL–PEG graft copolymers with tunable amphiphilicity as efficient drug delivery systems. Journal of Materials Chemistry B, 2016, 4, 6228-6239.	5.8	38
56	The structure-dependent toxicity, pharmacokinetics and anti-tumour activity of HPMA copolymer conjugates in the treatment of solid tumours and leukaemia. Journal of Controlled Release, 2016, 223, 1-10.	9.9	38
57	Hydrolytically Degradable Polymer Micelles for Anticancer Drug Delivery to Solid Tumors. Macromolecular Chemistry and Physics, 2012, 213, 858-867.	2.2	37
58	Thermoresponsive Polymer Micelles as Potential Nanosized Cancerostatics. Biomacromolecules, 2015, 16, 2493-2505.	5.4	37
59	Tailoring the physicochemical properties of core-crosslinked polymeric micelles for pharmaceutical applications. Journal of Controlled Release, 2016, 244, 314-325.	9.9	37
60	Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins – the introduction of protein-corona-free polymer nanomedicine. Nanoscale, 2018, 10, 6194-6204.	5.6	37
61	Tumor-targeted micelle-forming block copolymers for overcoming of multidrug resistance. Journal of Controlled Release, 2017, 245, 41-51.	9.9	36
62	N-(2-hydroxypropyl)methacrylamide polymer conjugated pyropheophorbide-a, a promising tumor-targeted theranostic probe for photodynamic therapy and imaging. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 130, 165-176.	4.3	36
63	HPMA based macromolecular therapeutics: Internalization, intracellular pathway and cell death depend on the character of covalent bond between the drug and the peptidic spacer and also on spacer composition. Journal of Drug Targeting, 2006, 14, 391-403.	4.4	35
64	Hydroxybisphosphonate-containing polymeric drug-delivery systems designed for targeting into bone tissue. Journal of Applied Polymer Science, 2006, 101, 3192-3201.	2.6	35
65	Self-assembly of biodegradable copolyester and reactive HPMA-based polymers into nanoparticles as an alternative stealth drug delivery system. Soft Matter, 2012, 8, 9563.	2.7	35
66	Pronounced Cellular Uptake of Pirarubicin versus That of Other Anthracyclines: Comparison of HPMA Copolymer Conjugates of Pirarubicin and Doxorubicin. Molecular Pharmaceutics, 2016, 13, 4106-4115.	4.6	34
67	Novel star HPMA-based polymer conjugates for passive targeting to solid tumors. Journal of Drug Targeting, 2011, 19, 874-889.	4.4	33
68	Synthesis of Well-Defined Semitelechelic Poly[<i>N</i> -(2-hydroxypropyl)methacrylamide] Polymers with Functional Group at the α-End of the Polymer Chain by RAFT Polymerization. Macromolecules, 2013, 46, 2100-2108.	4.8	33
69	Synthesis and Properties of Star HPMA Copolymer Nanocarriers Synthesised by RAFT Polymerisation Designed for Selective Anticancer Drug Delivery and Imaging. Macromolecular Bioscience, 2015, 15, 839-850.	4.1	33
70	HPMA-based star polymer biomaterials with tuneable structure and biodegradability tailored for advanced drug delivery to solid tumours. Biomaterials, 2020, 235, 119728.	11.4	33
71	HPMA-hydrogels containing cytostatic drugs. Journal of Controlled Release, 2002, 81, 101-111.	9.9	32
72	Biocompatible glyconanomaterials based on HPMA-copolymer for specific targeting of galectin-3. Journal of Nanobiotechnology, 2018, 16, 73.	9.1	32

TomÃiÅi Etrych

#	Article	IF	CITATIONS
73	Impact of Polymer-TLR-7/8 Agonist (Adjuvant) Morphology on the Potency and Mechanism of CD8 T Cell Induction. Biomacromolecules, 2019, 20, 854-870.	5.4	32
74	Improved Tumor-Specific Drug Accumulation by Polymer Therapeutics with pH-Sensitive Drug Release Overcomes Chemotherapy Resistance. Molecular Cancer Therapeutics, 2016, 15, 998-1007.	4.1	31
75	Characterisation of the binding interaction between poly(L-lysine) and DNA using the fluorescamine assay in the preparation of non-viral gene delivery vectors. FEBS Letters, 1999, 461, 96-100.	2.8	30
76	Overcoming multidrug resistance in Dox-resistant neuroblastoma cell lines via treatment with HPMA copolymer conjugates containing anthracyclines and P-gp inhibitors. Journal of Controlled Release, 2016, 233, 136-146.	9.9	30
77	Biodegradable Micellar HPMA-Based Polymer–Drug Conjugates with Betulinic Acid for Passive Tumor Targeting. Biomacromolecules, 2016, 17, 3493-3507.	5.4	30
78	Glycan-decorated HPMA copolymers as high-affinity lectin ligands. Polymer Chemistry, 2017, 8, 2647-2658.	3.9	30
79	Synergistic Action of Doxorubicin Bound to the Polymeric Carrier Based on <i>N</i> -(2-Hydroxypropyl)methacrylamide Copolymers through an Amide or Hydrazone Bond. Molecular Pharmaceutics, 2010, 7, 1027-1040.	4.6	29
80	A tumor-targeted polymer theranostics platform for positron emission tomography and fluorescence imaging. Nanoscale, 2017, 9, 10906-10918.	5.6	29
81	<scp>HPMA</scp> Copolymer Conjugates of <scp>DOX</scp> and Mitomycin C for Combination Therapy: Physicochemical Characterization, Cytotoxic Effects, Combination Index Analysis, and Antiâ€ <scp>T</scp> umor Efficacy. Macromolecular Bioscience, 2013, 13, 1648-1660.	4.1	27
82	The structure of polymer carriers controls the efficacy of the experimental combination treatment of tumors with HPMA copolymer conjugates carrying doxorubicin and docetaxel. Journal of Controlled Release, 2017, 246, 1-11.	9.9	27
83	Polymer nitric oxide donors potentiate the treatment of experimental solid tumours by increasing drug accumulation in the tumour tissue. Journal of Controlled Release, 2018, 269, 214-224.	9.9	27
84	Doxorubicin release is not a prerequisite for the in vitro cytotoxicity of HPMA-based pharmaceuticals: In vitro effect of extra drug-free GlyPheLeuGly sequences. Journal of Controlled Release, 2008, 127, 110-120.	9.9	26
85	Effective doxorubicin-based nano-therapeutics for simultaneous malignant lymphoma treatment and lymphoma growth imaging. Journal of Controlled Release, 2018, 289, 44-55.	9.9	26
86	Synthesis and Properties of Poly[N-(2-Hydroxypropyl) Methacrylamide] Conjugates of Superoxide Dismutase. Journal of Bioactive and Compatible Polymers, 2002, 17, 105-122.	2.1	25
87	Inhibitor–GCPII Interaction: Selective and Robust System for Targeting Cancer Cells with Structurally Diverse Nanoparticles. Molecular Pharmaceutics, 2018, 15, 2932-2945.	4.6	25
88	Glycopolymers for Efficient Inhibition of Galectin-3: <i>In Vitro</i> Proof of Efficacy Using Suppression of T Lymphocyte Apoptosis and Tumor Cell Migration. Biomacromolecules, 2020, 21, 3122-3133.	5.4	25
89	HPMA-hydrogels result in prolonged delivery of anticancer drugs and are a promising tool for the treatment of sensitive and multidrug resistant leukaemia. European Journal of Cancer, 2002, 38, 602-608.	2.8	24
90	High-molecular weight star conjugates containing docetaxel with high anti-tumor activity and low systemic toxicity in vivo. Polymer Chemistry, 2015, 6, 160-170.	3.9	24

ТомÃiÅi Етгусн

#	Article	IF	CITATIONS
91	Intended and Unintended Targeting of Polymeric Nanocarriers: The Case of Modified Poly(glycerol) Tj ETQq1 1	0.784314 4.1	rgBT_/Overloc
92	High-Affinity <i>N</i> -(2-Hydroxypropyl)methacrylamide Copolymers with Tailored <i>N</i> -Acetyllactosamine Presentation Discriminate between Galectins. Biomacromolecules, 2020, 21, 641-652.	5.4	24
93	HPMA Copolymer-Bound Doxorubicin Induces Immunogenic Tumor Cell Death. Current Medicinal Chemistry, 2013, 20, 4815-4826.	2.4	24
94	Fluorescence Imaging as a Tool in Preclinical Evaluation of Polymer-Based Nano-DDS Systems Intended for Cancer Treatment. Pharmaceutics, 2019, 11, 471.	4.5	23
95	<i>N</i> -(2-Hydroxypropyl)methacrylamide-Based Linear, Diblock, and Starlike Polymer Drug Carriers: Advanced Process for Their Simple Production. Biomacromolecules, 2018, 19, 4003-4013.	5.4	22
96	Polymer nanomedicines based on micelle-forming amphiphilic or water-soluble polymer-doxorubicin conjugates: Comparative study of in vitro and in vivo properties related to the polymer carrier structure, composition, and hydrodynamic properties. Journal of Controlled Release, 2020, 321, 718-733.	9.9	22
97	High-Molecular-Weight HPMA-Based Polymer Drug Carriers for Delivery to Tumor. Physiological Research, 2016, 65, S179-S190.	0.9	22
98	Inhibitor-Decorated Polymer Conjugates Targeting Fibroblast Activation Protein. Journal of Medicinal Chemistry, 2017, 60, 8385-8393.	6.4	21
99	Highly effective anti-tumor nanomedicines based on HPMA copolymer conjugates with pirarubicin prepared by controlled RAFT polymerization. Acta Biomaterialia, 2020, 106, 256-266.	8.3	20
100	Drug-HPMA-Hulg Conjugates Effective Against Human Solid Cancer. , 2003, 519, 125-143.		19
101	High-molecular-weight Polymers Containing Biodegradable Disulfide Bonds: Synthesis and <i>In Vitro</i> Verification of Intracellular Degradation. Journal of Bioactive and Compatible Polymers, 2010, 25, 5-26.	2.1	19
102	Anti-Lymphoma Efficacy Comparison of Anti-Cd20 Monoclonal Antibody-Targeted and Non-Targeted Star-Shaped Polymer-Prodrug Conjugates. Molecules, 2015, 20, 19849-19864.	3.8	19
103	Doxorubicin attached to HPMA copolymer via amide bond modifies the glycosylation pattern of EL4 cells. Tumor Biology, 2010, 31, 233-242.	1.8	18
104	Polymer Carriers for Anticancer Drugs Targeted to EGF Receptor. Macromolecular Bioscience, 2012, 12, 1714-1720.	4.1	18
105	Bloodstream Stability Predetermines the Antitumor Efficacy of Micellar Polymer–Doxorubicin Drug Conjugates with pH-Triggered Drug Release. Molecular Pharmaceutics, 2018, 15, 3654-3663.	4.6	18
106	Macromolecular <i>p</i> HPMA-Based Nanoparticles with Cholesterol for Solid Tumor Targeting: Behavior in HSA Protein Environment. Biomacromolecules, 2018, 19, 470-480.	5.4	17
107	Superior Penetration and Cytotoxicity of HPMA Copolymer Conjugates of Pirarubicin in Tumor Cell Spheroid. Molecular Pharmaceutics, 2019, 16, 3452-3459.	4.6	17
108	Singlet oxygen phosphorescence detection in vivo identifies PDT-induced anoxia in solid tumors. Photochemical and Photobiological Sciences, 2019, 18, 1304-1314.	2.9	17

ТомÃ:Å: Еткусн

#	Article	IF	CITATIONS
109	Polymer-Drug Conjugates in Inflammation Treatment. Physiological Research, 2018, 67, S281-S292.	0.9	17
110	Acid-labile pHPMA modification of four-arm oligoaminoamide pDNA polyplexes balances shielding and gene transfer activity in vitro and in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 105, 85-96.	4.3	16
111	Comparison of the pharmacological and biological properties of HPMA copolymer-pirarubicin conjugates: A single-chain copolymer conjugate and its biodegradable tandem-diblock copolymer conjugate. European Journal of Pharmaceutical Sciences, 2017, 106, 10-19.	4.0	15
112	The pH-Dependent and Enzymatic Release of Cytarabine From Hydrophilic Polymer Conjugates. Physiological Research, 2016, 65, S225-S232.	0.9	15
113	Use of synthetic vectors for neutralising antibody resistant delivery of replicating adenovirus DNA. Gene Therapy, 2006, 13, 1579-1586.	4.5	14
114	Micelle-forming HPMA copolymer conjugates of ritonavir bound via a pH-sensitive spacer with improved cellular uptake designed for enhanced tumor accumulation. Journal of Materials Chemistry B, 2016, 4, 7620-7629.	5.8	14
115	A Novel Approach to Increase the Stability of Liposomal Containers via In Prep Coating by Poly[<i>N</i> â€{2â€Hydroxypropyl)Methacrylamide] with Covalently Attached Cholesterol Groups. Macromolecular Chemistry and Physics, 2018, 219, 1700508.	2.2	14
116	HPMA copolymer conjugate with pirarubicin: In vitro and ex vivo stability and drug release study. International Journal of Pharmaceutics, 2018, 536, 108-115.	5.2	14
117	Overcoming Immunoescape Mechanisms of BCL1 Leukemia and Induction of CD8+ T-Cell–Mediated BCL1-Specific Resistance in Mice Cured by Targeted Polymer-Bound Doxorubicin. Cancer Research, 2008, 68, 9875-9883.	0.9	13
118	Graft copolymers with tunable amphiphilicity tailored for efficient dual drug delivery <i>via</i> encapsulation and pH-sensitive drug conjugation. Polymer Chemistry, 2020, 11, 4438-4453.	3.9	13
119	Release of Polyanions from Polyelectrolyte Complexes by Selective Degradation of the Polycation. Journal of Bioactive and Compatible Polymers, 2006, 21, 89-105.	2.1	12
120	Influence of molar mass, dispersity, and type and location of hydrophobic side chain moieties on the critical micellar concentration and stability of amphiphilic HPMA-based polymer drug carriers. Colloid and Polymer Science, 2017, 295, 1313-1325.	2.1	12
121	Star Polymer-Drug Conjugates with pH-Controlled Drug Release and Carrier Degradation. Journal of Nanomaterials, 2017, 2017, 1-10.	2.7	12
122	Binding of HSA to Macromolecular <i>p</i> HPMA Based Nanoparticles for Drug Delivery: An Investigation Using Fluorescence Methods. Langmuir, 2018, 34, 7998-8006.	3.5	12
123	Micelle-Forming Block Copolymers Tailored for Inhibition of P-gp-Mediated Multidrug Resistance: Structure to Activity Relationship. Pharmaceutics, 2019, 11, 579.	4.5	12
124	Targeted Polymer-Based Probes for Fluorescence Guided Visualization and Potential Surgery of EGFR-Positive Head-and-Neck Tumors. Pharmaceutics, 2020, 12, 31.	4.5	12
125	Polymer Cancerostatics Containing Cell-Penetrating Peptides: Internalization Efficacy Depends on Peptide Type and Spacer Length. Pharmaceutics, 2020, 12, 59.	4.5	12
126	Molecular Mechanisms of the Interactions of N-(2-Hydroxypropyl)methacrylamide Copolymers Designed for Cancer Therapy with Blood Plasma Proteins. Pharmaceutics, 2020, 12, 106.	4.5	12

TomÃiÅi Etrych

#	Article	IF	CITATIONS
127	The Comparison of In Vivo Properties of Water-Soluble HPMA-Based Polymer Conjugates with Doxorubicin Prepared by Controlled RAFT or Free Radical Polymerization. Physiological Research, 2015, 64, S41-S49.	0.9	12
128	Synergistic effect of EMF–BEMER-type pulsed weak electromagnetic field and HPMA-bound doxorubicin on mouse EL4 T-cell lymphoma. Journal of Drug Targeting, 2011, 19, 890-899.	4.4	11
129	Polymer Cancerostatics Targeted by Recombinant Antibody Fragments to GD2-Positive Tumor Cells. Biomacromolecules, 2019, 20, 412-421.	5.4	11
130	Overcoming resistance to rituximab in relapsed non-Hodgkin lymphomas by antibody-polymer drug conjugates actively targeted by anti-CD38 daratumumab. Journal of Controlled Release, 2020, 328, 160-170.	9.9	11
131	HPMA copolymer-antibody constructs in neoplastic treatment: an overview of therapeutics, targeted diagnostics, and drug-free systems. Journal of Controlled Release, 2020, 325, 304-322.	9.9	11
132	Polymer-ritonavir derivate nanomedicine with pH-sensitive activation possesses potent anti-tumor activity in vivo via inhibition of proteasome and STAT3 signaling. Journal of Controlled Release, 2021, 332, 563-580.	9.9	11
133	Acid-responsive HPMA copolymer-bradykinin conjugate enhances tumor-targeted delivery of nanomedicine. Journal of Controlled Release, 2021, 337, 546-556.	9.9	11
134	Biological Therapy of Hematologic Malignancies: Toward a Chemotherapy- free Era. Current Medicinal Chemistry, 2019, 26, 1002-1018.	2.4	11
135	Targeted Drug Delivery and Theranostic Strategies in Malignant Lymphomas. Cancers, 2022, 14, 626.	3.7	11
136	Polymer donors of nitric oxide improve the treatment of experimental solid tumours with nanosized polymer therapeutics. Journal of Drug Targeting, 2017, 25, 796-808.	4.4	10
137	Inhibitor–Polymer Conjugates as a Versatile Tool for Detection and Visualization of Cancer-Associated Carbonic Anhydrase Isoforms. ACS Omega, 2019, 4, 6746-6756.	3.5	10
138	Polymerâ€Based Drugâ€Free Therapeutics for Anticancer, Antiâ€Inflammatory, and Antibacterial Treatment. Macromolecular Bioscience, 2021, 21, e2100135.	4.1	10
139	Glycopolymers Decorated with 3- <i>O</i> -Substituted Thiodigalactosides as Potent Multivalent Inhibitors of Galectin-3. Journal of Medicinal Chemistry, 2022, 65, 3866-3878.	6.4	10
140	Interaction of N-(2-Hydroxypropyl)methacrylamide Copolymer-Doxorubicin Conjugates with Human Liver Microsomal Cytochromes P450: Comparison with Free Doxorubicin. Drug Metabolism and Disposition, 2011, 39, 1704-1710.	3.3	8
141	Nanotherapeutics Shielded With a pH Responsive Polymeric Layer. Physiological Research, 2015, 64, S29-S44.	0.9	8
142	HPMA Copolymer-Based Polymer Conjugates for the Delivery and Controlled Release of Retinoids. Physiological Research, 2016, 65, S233-S241.	0.9	8
143	Drug Carriers With Star Polymer Structures. Physiological Research, 2018, 67, S293-S303.	0.9	8
144	Iterative Photoinduced Chain Functionalization as a Generic Platform for Advanced Polymeric Drug Delivery Systems. Macromolecular Rapid Communications, 2018, 39, 1700502.	3.9	7

ТомÃiÅi Еткусн

#	Article	IF	CITATIONS
145	Oligopeptide-targeted polymer nanoprobes for fluorescence-guided endoscopic surgery. Multifunctional Materials, 2019, 2, 024004.	3.7	7
146	Cytarabine nanotherapeutics with increased stability and enhanced lymphoma uptake for tailored highly effective therapy of mantle cell lymphoma. Acta Biomaterialia, 2021, 119, 349-359.	8.3	7
147	Unraveling the role of Intralipid in suppressing off-target delivery and augmenting the therapeutic effects of anticancer nanomedicines. Acta Biomaterialia, 2021, 126, 372-383.	8.3	7
148	Micellar and Antibodyâ€Targeted Polymer Therapeutics. Macromolecular Symposia, 2010, 295, 1-12.	0.7	6
149	Passive Tumor Targeting of Polymer Therapeutics: In Vivo Imaging of Both the Polymer Carrier and the Enzymatically Cleavable Drug Model. Macromolecular Bioscience, 2016, 16, 1577-1582.	4.1	6
150	Dual fluorescent <i>N</i> -(2-hydroxypropyl) methacrylamide-based conjugates for passive tumor targeting with reduction-sensitive drug release: Proof of the concept, tumor accumulation, and biodistribution. Journal of Bioactive and Compatible Polymers, 2016, 31, 348-360.	2.1	6
151	Ability of polymer-bound P-glycoprotein inhibitor ritonavir to overcome multidrug resistance in various resistant neuroblastoma cell lines. Anti-Cancer Drugs, 2017, 28, 1126-1130.	1.4	6
152	Tris-(Nitrilotriacetic Acid)-Decorated Polymer Conjugates as Tools for Immobilization and Visualization of His-Tagged Proteins. Catalysts, 2019, 9, 1011.	3.5	6
153	Polymer Nanomedicines with Ph-Sensitive Release of Dexamethasone for the Localized Treatment of Inflammation. Pharmaceutics, 2020, 12, 700.	4.5	6
154	Nanotherapeutics with suitable properties for advanced anticancer therapy based on HPMA copolymer-bound ritonavir via pH-sensitive spacers. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 131, 141-150.	4.3	5
155	Structure-to-Efficacy Relationship of HPMA-Based Nanomedicines: The Tumor Spheroid Penetration Study. Pharmaceutics, 2020, 12, 1242.	4.5	5
156	HPMA-Based Copolymers Carrying STAT3 Inhibitor Cucurbitacin-D as Stimulus-Sensitive Nanomedicines for Oncotherapy. Pharmaceutics, 2021, 13, 179.	4.5	4
157	Singlet Oxygen In Vivo: It Is All about Intensity. Journal of Personalized Medicine, 2022, 12, 891.	2.5	4
158	Fine needle aspiration biopsy proves increased T-lymphocyte proliferation in tumor and decreased metastatic infiltration after treatment with doxorubicin bound to PHPMA copolymer carrier. Journal of Drug Targeting, 2013, 21, 648-661.	4.4	3
159	Intratumoral Distribution and pH-Dependent Drug Release of High Molecular Weight HPMA Copolymer Drug Conjugates Strongly Depend on Specific Tumor Substructure and Microenvironment. International Journal of Molecular Sciences, 2020, 21, 6029.	4.1	3
160	The role of the biotin linker in polymer antibody mimetics, iBodies, in biochemical assays. Polymer Chemistry, 2021, 12, 6009-6021.	3.9	3
161	Nanotherapeutics With Anthracyclines: Methods of Determination and Quantification of Anthracyclines in Biological Samples. Physiological Research, 2015, 64, S1-S10.	0.9	3
162	Coating Persistent Luminescence Nanoparticles With Hydrophilic Polymers for in vivo Imaging. Frontiers in Chemistry, 2020, 8, 584114.	3.6	2

ТомÃiÅi Еткусн

#	Article	IF	CITATIONS
163	HPMA-Based Polymer Conjugates for Repurposed Drug Mebendazole and Other Imidazole-Based Therapeutics. Polymers, 2021, 13, 2530.	4.5	2
164	Cytotoxic and Immunomodulatory Activites of Polymer-Bound Drugs. , 2004, , 67-78.		2
165	Intracellular Fate of Polymer Therapeutics Investigated by Fluorescence Lifetime Imaging and Fluorescence Pattern Analysis. Physiological Research, 2016, 65, S217-S224.	0.9	2
166	Synthesis of Water-Soluble Star Polymers Based on Cyclodextrins. Physiological Research, 2018, 67, S357-S365.	0.9	2
167	The development of a high-affinity conformation-sensitive antibody mimetic using a biocompatible copolymer carrier (iBody). Journal of Biological Chemistry, 2021, 297, 101342.	3.4	2
168	HPMA Copolymer Mebendazole Conjugate Allows Systemic Administration and Possesses Antitumour Activity In Vivo. Pharmaceutics, 2022, 14, 1201.	4.5	2
169	HPMA copolymer conjugates for dual therapy. Journal of Controlled Release, 2008, 132, e63-e65.	9.9	1
170	Traceless pH sensitive coating of polyplexes prepared from well-defined polycations. Journal of Controlled Release, 2015, 213, e70.	9.9	0
171	Happy Birthday Karel!. Macromolecular Bioscience, 2018, 18, 1700400.	4.1	0
172	In memory of Karel Ulbrich. Journal of Controlled Release, 2019, 309, 343.	9.9	0
173	Tumor Stimulus-Responsive Biodegradable Diblock Copolymer Conjugates as Efficient Anti-Cancer Nanomedicines. Journal of Personalized Medicine, 2022, 12, 698.	2.5	0
174	Simultaneous Delivery of Doxorubicin and Protease Inhibitor Derivative to Solid Tumors via Star-Shaped Polymer Nanomedicines Overcomes P-gp- and STAT3-Mediated Chemoresistance. Biomacromolecules, 2022, 23, 2522-2535.	5.4	0
175	Metastatic spread inhibition of cancer cells through stimuli-sensitive HPMA copolymer-bound actinonin nanomedicines. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 44, 102578.	3.3	0