Xiaoling Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4348091/publications.pdf

Version: 2024-02-01

114418 136885 4,417 96 32 63 h-index citations g-index papers 99 99 99 4732 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dual-Mode Ultrasensitive Quantification of MicroRNA in Living Cells by Chiroplasmonic Nanopyramids Self-Assembled from Gold and Upconversion Nanoparticles. Journal of the American Chemical Society, 2016, 138, 306-312.	6.6	399
2	Unexpected Chirality of Nanoparticle Dimers and Ultrasensitive Chiroplasmonic Bioanalysis. Journal of the American Chemical Society, 2013, 135, 18629-18636.	6.6	274
3	Enantiomer-dependent immunological response to chiral nanoparticles. Nature, 2022, 601, 366-373.	13.7	243
4	Hierarchical Plasmonic Nanorods and Upconversion Core–Satellite Nanoassemblies for Multimodal Imagingâ€Guided Combination Phototherapy. Advanced Materials, 2016, 28, 898-904.	11.1	240
5	A SERS-active sensor based on heterogeneous gold nanostar core–silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1. Nanoscale, 2016, 8, 1873-1878.	2.8	139
6	Chiral Core–Shell Upconversion Nanoparticle@MOF Nanoassemblies for Quantification and Bioimaging of Reactive Oxygen Species ⟨i⟩in Vivo⟨ i⟩. Journal of the American Chemical Society, 2019, 141, 19373-19378.	6.6	139
7	Propellerâ€Like Nanorodâ€Upconversion Nanoparticle Assemblies with Intense Chiroptical Activity and Luminescence Enhancement in Aqueous Phase. Advanced Materials, 2016, 28, 5907-5915.	11.1	132
8	Unusual Circularly Polarized Photocatalytic Activity in Nanogapped Gold–Silver Chiroplasmonic Nanostructures. Advanced Functional Materials, 2015, 25, 5816-5822.	7.8	117
9	Environmentally responsive plasmonic nanoassemblies for biosensing. Chemical Society Reviews, 2018, 47, 4677-4696.	18.7	116
10	Multigaps Embedded Nanoassemblies Enhance In Situ Raman Spectroscopy for Intracellular Telomerase Activity Sensing. Advanced Functional Materials, 2016, 26, 1602-1608.	7.8	115
11	Hybrid Nanoparticle Pyramids for Intracellular Dual MicroRNAs Biosensing and Bioimaging. Advanced Materials, 2017, 29, 1606086.	11.1	105
12	Tuning the interactions between chiral plasmonic films and livingÂcells. Nature Communications, 2017, 8, 2007.	5.8	102
13	A Singlet Oxygen Generating Agent by Chiralityâ€dependent Plasmonic Shellâ€Satellite Nanoassembly. Advanced Materials, 2017, 29, 1606864.	11.1	101
14	Goldâ€Quantum Dot Core–Satellite Assemblies for Lighting Up MicroRNA In Vitro and In Vivo. Small, 2016, 12, 4662-4668.	5.2	90
15	Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. Nature Nanotechnology, 2022, 17, 408-416.	15.6	83
16	Quantitative zeptomolar imaging of miRNA cancer markers with nanoparticle assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3391-3400.	3.3	82
17	SERS- and luminescence-active Au–Au–UCNP trimers for attomolar detection of two cancer biomarkers. Nanoscale, 2017, 9, 3865-3872.	2.8	78
18	Gold Nanoparticleâ€Based Paper Sensor for Simultaneous Detection of 11 Benzimidazoles by One Monoclonal Antibody. Small, 2018, 14, 1701782.	5.2	73

#	Article	IF	Citations
19	Ultrasensitive and eco-friendly immunoassays based monoclonal antibody for detection of deoxynivalenol in cereal and feed samples. Food Chemistry, 2019, 270, 130-137.	4.2	71
20	Gold Coreâ€DNAâ€Silver Shell Nanoparticles with Intense Plasmonic Chiroptical Activities. Advanced Functional Materials, 2015, 25, 850-854.	7.8	70
21	Ultrasensitive Detection of Prostateâ€Specific Antigen and Thrombin Based on Goldâ€Upconversion Nanoparticle Assembled Pyramids. Small, 2017, 13, 1603944.	5.2	70
22	Rapid and sensitive detection of diclazuril in chicken samples using a gold nanoparticle-based lateral-flow strip. Food Chemistry, 2020, 312, 126116.	4.2	70
23	Building SERS-active heteroassemblies for ultrasensitive Bisphenol A detection. Biosensors and Bioelectronics, 2016, 81, 138-142.	5.3	69
24	Au@gap@AuAg Nanorod Sideâ€byâ€Side Assemblies for Ultrasensitive SERS Detection of Mercury and its Transformation. Small, 2019, 15, e1901958.	5.2	62
25	A colorimetric paper-based sensor for toltrazuril and its metabolites in feed, chicken, and egg samples. Food Chemistry, 2019, 276, 707-713.	4.2	62
26	Chiral Cu <i>>_x</i> >OS@ZIFâ€8 Nanostructures for Ultrasensitive Quantification of Hydrogen Sulfide In Vivo. Advanced Materials, 2020, 32, e1906580.	11,1	59
27	Ultrasensitive SERS detection of VEGF based on a self-assembled Ag ornamented–AU pyramid superstructure. Biosensors and Bioelectronics, 2015, 68, 593-597.	5.3	57
28	Scissorâ€Like Chiral Metamolecules for Probing Intracellular Telomerase Activity. Advanced Functional Materials, 2016, 26, 7352-7358.	7.8	51
29	Paper supported immunosensor for detection of antibiotics. Biosensors and Bioelectronics, 2012, 33, 309-312.	5.3	47
30	DNAâ€Driven Twoâ€Layer Core–Satellite Gold Nanostructures for Ultrasensitive MicroRNA Detection in Living Cells. Small, 2020, 16, e2000003.	5.2	47
31	A self-assembled chiral-aptasensor for ATP activity detection. Nanoscale, 2016, 8, 15008-15015.	2.8	40
32	Chiral AuCuAu Heterogeneous Nanorods with Tailored Optical Activity. Advanced Functional Materials, 2020, 30, 2000670.	7.8	36
33	Tetrahedron Probes for Ultrasensitive <i>In Situ</i> Detection of Telomerase and Surface Glycoprotein Activity in Living Cells. Analytical Chemistry, 2020, 92, 2310-2315.	3.2	35
34	Potential Environmental Health Risk Analysis of Neonicotinoids and a Synergist. Environmental Science & Environmental Science	4.6	34
35	SERS-active silver nanoparticle trimers for sub-attomolar detection of alpha fetoprotein. RSC Advances, 2015, 5, 73395-73398.	1.7	33
36	Building heterogeneous core–satellite chiral assemblies for ultrasensitive toxin detection. Biosensors and Bioelectronics, 2015, 66, 554-558.	5.3	32

#	Article	IF	Citations
37	Development of a sandwich ELISA and immunochromatographic strip for the detection of shrimp tropomyosin. Food and Agricultural Immunology, 2019, 30, 606-619.	0.7	30
38	Development of monoclonal antibody-based colloidal gold immunochromatographic assay for analysis of halofuginone in milk. Food and Agricultural Immunology, 2019, 30, 112-122.	0.7	30
39	An immunochromatographic strip sensor for sildenafil and its analogues. Journal of Materials Chemistry B, 2019, 7, 6383-6389.	2.9	30
40	Monoclonal antibody-based cross-reactive sandwich ELISA for the detection of Salmonella spp. in milk samples. Analytical Methods, 2015, 7, 9047-9053.	1.3	29
41	Rapid detection of praziquantel using monoclonal antibody-based ic-ELISA and immunochromatographic strips. Food and Agricultural Immunology, 2019, 30, 913-923.	0.7	26
42	Peptide Mediated Chiral Inorganic Nanomaterials for Combating Gramâ€Negative Bacteria. Advanced Functional Materials, 2018, 28, 1805112.	7.8	25
43	Gold immunochromatographic assay for kitasamycin and josamycin residues screening in milk and egg samples. Food and Agricultural Immunology, 2019, 30, 1189-1201.	0.7	25
44	IC-ELISA and immunochromatographic strip assay based monoclonal antibody for the rapid detection of bisphenol S. Food and Agricultural Immunology, 2019, 30, 633-646.	0.7	24
45	Profiling and Identification of Biocatalyzed Transformation of Sulfoxaflor In Vivo. Angewandte Chemie - International Edition, 2020, 59, 16218-16224.	7.2	24
46	Preparation of an anti-thiamethoxam monoclonal antibody for development of an indirect competitive enzyme-linked immunosorbent assay and a colloidal gold immunoassay. Food and Agricultural Immunology, 2018, 29, 1173-1183.	0.7	23
47	Development of immunocolloidal strip for rapid detection of pyrimethanil. Food and Agricultural Immunology, 2019, 30, 1239-1252.	0.7	23
48	Up-conversion fluorescence "off-on―switch based on heterogeneous core-satellite assembly for thrombin detection. Biosensors and Bioelectronics, 2015, 70, 372-375.	5.3	22
49	Development of a fluorescent immunoassay strip for the rapid quantitative detection of cadmium in rice. Food and Agricultural Immunology, 2020, 31, 501-512.	0.7	22
50	Development of an immunochromatographic strip test for rapid detection of sodium nifurstyrenate in fish. Food and Agricultural Immunology, 2019, 30, 236-247.	0.7	21
51	SERS-active Au NR oligomer sensor for ultrasensitive detection of mercury ions. RSC Advances, 2015, 5, 81802-81807.	1.7	20
52	Development of a colloidal gold immunoassay for the detection of four eugenol compounds in water. Food and Agricultural Immunology, 2019, 30, 1318-1331.	0.7	19
53	A multiplex lateral flow immunochromatography assay for the quantitative detection of pyraclostrobin, myclobutanil, and kresoxim-methyl residues in wheat. Food Chemistry, 2022, 377, 131964.	4.2	18
54	Development of an immunochromatography assay for salinomycin and methyl salinomycin in honey. Food and Agricultural Immunology, 2019, 30, 995-1006.	0.7	17

#	Article	IF	Citations
55	Rapid detection of tenuazonic acid in cereal and fruit juice using a lateral-flow immunochromatographic assay strip. Food and Agricultural Immunology, 2017, 28, 1293-1303.	0.7	16
56	Chiromagnetic Plasmonic Nanoassemblies with Magnetic Field Modulated Chiral Activity. Small, 2020, 16, e1905734.	5.2	16
57	Detection of aminophylline in serum using an immunochromatographic strip test. Food and Agricultural Immunology, 2020, 31, 33-44.	0.7	16
58	Development of an ic-ELISA and Immunochromatographic Strip Assay for the Detection of Diacetoxyscirpenol in Rice. ACS Omega, 2020, 5, 17876-17882.	1.6	16
59	Development of a gold nanoparticle-based lateral-flow strip for the detection of dinitolmide in chicken tissue. Analytical Methods, 2020, 12, 3210-3217.	1.3	16
60	Colloidal Gold Immunochromatographic Assay for Rapid Detection of Carbadox and Cyadox in Chicken Breast. ACS Omega, 2020, 5, 1422-1429.	1.6	16
61	A colloidal gold immunochromatography test strip based on a monoclonal antibody for the rapid detection of triadimefon and triadimenol in foods. Food and Agricultural Immunology, 2020, 31, 475-488.	0.7	16
62	A Simple, Sensitive, Rapid and Specific Detection Method for Bisphenol A based on Fluorescence Polarization Immunoassay. Immunological Investigations, 2012, 41, 38-50.	1.0	15
63	Development of an immunochromatographic strip assay based on a monoclonal antibody for detection of cimaterol. Food and Agricultural Immunology, 2019, 30, 1162-1173.	0.7	15
64	Development of a gold immunochromatographic strip for the rapid detection of 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ) in catfish. Food and Agricultural Immunology, 2020, 31, 751-763.	0.7	15
65	A fluorescence active gold nanorod–quantum dot core–satellite nanostructure for sub-attomolar tumor marker biosensing. RSC Advances, 2015, 5, 97898-97902.	1.7	14
66	Porous Cu _{<i>x</i>} Co _{<i>y</i>} S Supraparticles for Inâ€Vivo Telomerase Imaging and Reactive Oxygen Species Generation. Angewandte Chemie - International Edition, 2019, 58, 19067-19072.	7.2	14
67	Development of ic-ELISA and an immunochromatographic strip assay for the detection of aristolochic acid â Food and Agricultural Immunology, 2019, 30, 140-149.	0.7	14
68	Detection of triclabendazole and three metabolites in bovine muscle samples with a gold nanoparticle-based lateral flow immunoassay. Analytical Methods, 2019, 11, 5478-5486.	1.3	14
69	A colloidal gold immunochromatography test strip based on a monoclonal antibody for the rapid detection of triadimefon and triadimenol in foods. Food and Agricultural Immunology, 2020, 31, 447-462.	0.7	14
70	Metabolic profile of chiral cobalt oxide nanoparticles in vitro and in vivo. Nano Research, 2021, 14, 2451-2455.	5.8	13
71	Development of a fluorescent quantification strip assay for the detection of lead. Food and Agricultural Immunology, 2020, 31, 642-652.	0.7	12
72	Development of an antibody-based colloidal gold immunochromatographic lateral flow strip test for natamycin in milk and yoghurt samples. Food and Agricultural Immunology, 2017, 28, 1283-1292.	0.7	11

#	Article	IF	CITATIONS
73	A sensitive lateral flow immunoassay for the multiple residues of five adamantanes. Food and Agricultural Immunology, 2019, 30, 647-661.	0.7	11
74	Colloidal Gold Immunochromatographic Strip Assay for the Detection of Azaperone in Pork and Pork Liver. ACS Omega, 2020, 5, 1346-1351.	1.6	11
75	Development of sandwich ELISA and immunochromatographic strip methods for the detection of Xanthomonas oryzae pv. oryzae. Analytical Methods, 2015, 7, 6190-6197.	1.3	10
76	Preparation of an anti-4,4′-dinitrocarbanilide monoclonal antibody and its application in an immunochromatographic assay for anticoccidial drugs. Food and Agricultural Immunology, 2018, 29, 1162-1172.	0.7	10
77	Development of an ic-ELISA and an immunochromatographic strip assay for the detection of aconitine. Food and Agricultural Immunology, 2020, 31, 243-254.	0.7	10
78	Development of a gold nanoparticle-based strip assay for detection of clopidol in the chicken. Food and Agricultural Immunology, 2020, 31, 489-500.	0.7	10
79	Sex-Dependent Environmental Health Risk Analysis of Flupyradifurone. Environmental Science & Emp; Technology, 2022, 56, 1841-1853.	4.6	10
80	Ultrasensitive anti-melamine monoclonal antibody and its use in the development of an immunochromatographic strip. Food and Agricultural Immunology, 2019, 30, 462-474.	0.7	9
81	Gold Immunochromatographic Assay for Rapid Onâ€Site Detection of Lincosamide Residues in Milk, Egg, Beef, and Honey Samples. Biotechnology Journal, 2020, 15, 1900174.	1.8	9
82	Self-limiting self-assembly of supraparticles for potential biological applications. Nanoscale, 2021, 13, 2302-2311.	2.8	8
83	Ultrasensitive immunochromatographic strips for fast screening of the nicarbazin marker in chicken breast and liver samples based on monoclonal antibodies. Analytical Methods, 2020, 12, 2143-2151.	1.3	7
84	Rapid immunochromatographic test strip detection of mabuterol and its cross-reactivity with mapenterol. Food and Agricultural Immunology, 2018, 29, 1028-1040.	0.7	6
85	Development of an immunochromatographic strip for the detection of rosiglitazone in functional foods based on monoclonal antibodies. Analytical Methods, 2019, 11, 4910-4916.	1.3	6
86	An Ultrasensitive Electrochemical Immunosensor for Nonylphenol Leachate from Instant Noodle Containers in Southeast Asia. Chemistry - A European Journal, 2019, 25, 7023-7030.	1.7	6
87	Biosensors: SERS Encoded Silver Pyramids for Attomolar Detection of Multiplexed Disease Biomarkers (Adv. Mater. 10/2015). Advanced Materials, 2015, 27, 1799-1799.	11.1	5
88	An ic-ELISA and immunochromatographic strip assay for the detection of 2,4-dichlorophenoxyacetic acid in bean sprouts and cabbage. Journal of Pharmaceutical and Biomedical Analysis, 2022, 209, 114524.	1.4	5
89	Phototherapy: Hierarchical Plasmonic Nanorods and Upconversion Core–Satellite Nanoassemblies for Multimodal Imagingâ€Guided Combination Phototherapy (Adv. Mater. 5/2016). Advanced Materials, 2016, 28, 897-897.	11.1	4
90	Gold nanoparticle-based lateral flow strips for rapid and sensitive detection of Virginiamycin M1. Food and Agricultural Immunology, 2020, 31, 764-777.	0.7	4

#	Article	IF	CITATION
91	Profiles of Sterigmatocystin and Its Metabolites during Traditional Chinese Rice Wine Processing. Biosensors, 2022, 12, 212.	2.3	3
92	Nanoparticles: Gold Core-DNA-Silver Shell Nanoparticles with Intense Plasmonic Chiroptical Activities (Adv. Funct. Mater. 6/2015). Advanced Functional Materials, 2015, 25, 987-987.	7.8	2
93	Porous Cu x Co y S Supraparticles for Inâ€Vivo Telomerase Imaging and Reactive Oxygen Species Generation. Angewandte Chemie, 2019, 131, 19243-19248.	1.6	2
94	Photodynamic Therapy: A Singlet Oxygen Generating Agent by Chiralityâ€dependent Plasmonic Shellâ€Satellite Nanoassembly (Adv. Mater. 18/2017). Advanced Materials, 2017, 29, .	11.1	1
95	Development, optimization and validation of modified QuEChERS based UPLC-MS/MS for simultaneous determination of nine steroid hormones in milk powder and milk. New Journal of Chemistry, 2022, 46, 14597-14604.	1.4	1
96	Profiling and Identification of Biocatalyzed Transformation of Sulfoxaflor In Vivo. Angewandte Chemie, 2020, 132, 16352-16358.	1.6	0