
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/434763/publications.pdf Version: 2024-02-01

TIM RUDT

#	Article	IF	CITATIONS
1	Local climate impacts from ongoing restoration of a peatland. Hydrological Processes, 2022, 36, .	2.6	5
2	The global transformation of geomorphology. Geological Society Memoir, 2022, 58, 1-17.	1.7	6
3	A 50â€year record of nitrate concentrations in the Slapton Ley Catchment, Devon, United Kingdom. Hydrological Processes, 2021, 35, .	2.6	2
4	BOD as a Measure of Fluvial Organic Matter Lability—The Decoupling of O ₂ Consumption From CO ₂ Production. Journal of Geophysical Research G: Biogeosciences, 2021, 126, .	3.0	1
5	Monitoring soil erosion on agricultural land: results and implications for the Rother valley, West Sussex, UK. Earth Surface Processes and Landforms, 2020, 45, 3931-3942.	2.5	10
6	The dissolved organic carbon flux from the UK – A new Bayesian approach to flux calculation. Journal of Hydrology, 2020, 590, 125511.	5.4	3
7	Are peatlands cool humid islands in a landscape?. Hydrological Processes, 2020, 34, 5013-5025.	2.6	4
8	The Place of Field Studies in Environmental Science. , 2020, , 47-65.		0
9	A spatial total nitrogen budget for Great Britain. Science of the Total Environment, 2020, 728, 138864.	8.0	5
10	The History of Fieldwork in the Geosciences. , 2020, , 66-86.		0
11	The Impact of Peatland Restoration on Local Climate: Restoration of a Cool Humid Island. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1696-1713.	3.0	14
12	The importance of sewage effluent discharge in the export of dissolved organic carbon from U.K. rivers. Hydrological Processes, 2019, 33, 1851-1864.	2.6	14
13	A Molecular Budget for a Peatland Based Upon ¹³ C Solid tate Nuclear Magnetic Resonance. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 547-560.	3.0	11
14	Declines in the dissolved organic carbon (DOC) concentration and flux from the UK. Journal of Hydrology, 2018, 556, 775-789.	5.4	26
15	Changing patterns of daily precipitation totals at the Coweeta Hydrologic Laboratory, North Carolina, <scp>USA</scp> . International Journal of Climatology, 2018, 38, 94-104.	3.5	30
16	The fate of suspended sediment and particulate organic carbon in transit through the channels of a river catchment. Hydrological Processes, 2018, 32, 146-159.	2.6	11
17	The seven sources of variance in fluvial flux time series. Hydrological Processes, 2018, 32, 3996-3997.	2.6	3
18	Thermodynamic Control of the Carbon Budget of a Peatland. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1863-1878.	3.0	14

#	Article	IF	CITATIONS
19	Human impact on longâ€ŧerm organic carbon export to rivers. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 947-965.	3.0	37
20	The flux of organic matter through a peatland ecosystem: The role of cellulose, lignin, and their control of the ecosystem oxidation state. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1655-1671.	3.0	19
21	More rain, less soil: longâ€ŧerm changes in rainfall intensity with climate change. Earth Surface Processes and Landforms, 2016, 41, 563-566.	2.5	72
22	Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nature Geoscience, 2016, 9, 353-356.	12.9	282
23	The total phosphorus budget of a peatâ€covered catchment. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1814-1828.	3.0	16
24	The UK's total nitrogen budget from 1990 to 2020: a transition from source to sink?. Biogeochemistry, 2016, 129, 325-340.	3.5	9
25	The effective oxidation state of a peatland. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 145-158.	3.0	18
26	The fluvial flux of total reactive and total phosphorus from the UK in the context of a national phosphorus budget: comparing UK river fluxes with phosphorus trade imports and exports. Biogeochemistry, 2016, 130, 31-51.	3.5	17
27	The fluvial flux of particulate organic matter from the UK: the emission factor of soil erosion. Earth Surface Processes and Landforms, 2016, 41, 61-71.	2.5	22
28	Shifts in discharge-concentration relationships as a small catchment recover from severe drought. Hydrological Processes, 2015, 29, 498-507.	2.6	34
29	An analysis of rainfall across the British Isles in the 1870s. International Journal of Climatology, 2015, 35, 2934-2947.	3.5	11
30	Whither field hydrology? The need for discovery science and outrageous hydrological hypotheses. Water Resources Research, 2015, 51, 5919-5928.	4.2	127
31	Seeing the climate through the trees: observing climate and forestry impacts on streamflow using a 60â€year record. Hydrological Processes, 2015, 29, 473-480.	2.6	24
32	Time series analysis of the world's longest fluvial nitrate record: evidence for changing states of catchment saturation. Hydrological Processes, 2015, 29, 434-444.	2.6	14
33	Whither field hydrology? The need for discovery science and outrageous hydrological hypotheses. , 2015, 51, 5919.		1
34	Rainfall Distributions in Sri Lanka in Time and Space: An Analysis Based on Daily Rainfall Data. Climate, 2014, 2, 242-263.	2.8	47
35	Sustainable Phosphorus Management and the Need for a Long-Term Perspective: The Legacy Hypothesis. Environmental Science & Technology, 2014, 48, 8417-8419.	10.0	161
36	North Atlantic Oscillation amplifies orographic precipitation and river flow in upland Britain. Water Resources Research, 2013, 49, 3504-3515.	4.2	62

#	Article	IF	CITATIONS
37	Farming for Water Quality: Balancing Food Security and Nitrate Pollution in UK River Basins. Annals of the American Association of Geographers, 2013, 103, 397-407.	3.0	33
38	Anticipating and Managing Future Trade-offs and Complementarities between Ecosystem Services. Ecology and Society, 2013, 18, .	2.3	70
39	The flux of dissolved nitrogen from the UK — Evaluating the role of soils and land use. Science of the Total Environment, 2012, 434, 90-100.	8.0	24
40	Forest land cover continues to exacerbate freshwater acidification despite decline in sulphate emissions. Environmental Pollution, 2012, 167, 58-69.	7.5	22
41	The multi-annual nitrogen budget of a peat-covered catchment — Changing from sink to source?. Science of the Total Environment, 2012, 433, 178-188.	8.0	23
42	The flux of DOC from the UK – Predicting the role of soils, land use and net watershed losses. Journal of Hydrology, 2012, 448-449, 149-160.	5.4	63
43	Changing patterns of heavy rainfall in upland areas: a case study from northern England. International Journal of Climatology, 2012, 32, 518-532.	3.5	49
44	Monitoring fluvial water chemistry for trend detection: hydrological variability masks trends in datasets covering fewer than 12 years. Journal of Environmental Monitoring, 2011, 13, 514.	2.1	27
45	Nitrate in United Kingdom Rivers: Policy and Its Outcomes Since 1970. Environmental Science & Technology, 2011, 45, 175-181.	10.0	60
46	A homogenous daily rainfall record for the Radcliffe Observatory, Oxford, from the 1820s. Water Resources Research, 2011, 47, .	4.2	16
47	Nitrate pollution in intensively farmed regions: What are the prospects for sustaining highâ€quality groundwater?. Water Resources Research, 2011, 47, .	4.2	84
48	On the value of longâ€ŧerm, lowâ€frequency water quality sampling: avoiding throwing the baby out with the bathwater. Hydrological Processes, 2011, 25, 828-830.	2.6	44
49	Nitrate concentrations and fluxes in the River Thames over 140 years (1868–2008): are increases irreversible?. Hydrological Processes, 2010, 24, 2657-2662.	2.6	132
50	What do we still need to know about the ecohydrology of riparian zones?. Ecohydrology, 2010, 3, 373-377.	2.4	36
51	Placing heavy rainfall events in context using long time series: An example from the North York Moors. Weather, 2010, 65, 88-94.	0.7	4
52	The complete carbon budget of a drained peat catchment. Soil Use and Management, 2010, 26, 261-273.	4.9	29
53	Has the composition of fluvial DOC changed? Spatiotemporal patterns in the DOCâ€color relationship. Global Biogeochemical Cycles, 2010, 24, .	4.9	13
54	Long-term monitoring of river water nitrate: how much data do we need?. Journal of Environmental Monitoring, 2010, 12, 71-79.	2.1	57

#	Article	IF	CITATIONS
55	The multi-annual carbon budget of a peat-covered catchment. Science of the Total Environment, 2009, 407, 4084-4094.	8.0	88
56	Stream nitrate levels in a small catchment in south west England over a period of 35 years (1970–2005). Hydrological Processes, 2009, 23, 2056-2068.	2.6	20
57	Statistical analysis of nitrate concentrations from the Rivers Frome and Piddle (Dorset, UK) for the period 1965–2007. Ecohydrology, 2009, 2, 55-65.	2.4	41
58	Fluvial flux of nitrogen from Great Britain 1974–2005 in the context of the terrestrial nitrogen budget of Great Britain. Global Biogeochemical Cycles, 2009, 23, .	4.9	41
59	Homogenising the rainfall record at Durham for the 1870s. Hydrological Sciences Journal, 2009, 54, 199-209.	2.6	5
60	Temporal and spatial analysis of nitrate concentrations from the Frome and Piddle catchments in Dorset (UK) for water years 1978 to 2007: Evidence for nitrate breakthrough?. Science of the Total Environment, 2008, 407, 507-526.	8.0	40
61	Linking pulses of atmospheric deposition to DOC release in an upland peatâ€covered catchment. Global Biogeochemical Cycles, 2008, 22, .	4.9	9
62	Importance of long-term monitoring for detecting environmental change: lessons from a lowland river in south east England. Biogeosciences, 2008, 5, 1529-1535.	3.3	58
63	Intercomparison of Evapotranspiration Over the Savannah Volta Basin in West Africa Using Remote Sensing Data. Sensors, 2008, 8, 2736-2761.	3.8	25
64	If you have a hammer everything looks like a nail: traditional versus participatory model building. Interdisciplinary Science Reviews, 2007, 32, 263-282.	1.4	121
65	Flux of dissolved organic carbon from U.K. rivers. Global Biogeochemical Cycles, 2007, 21, .	4.9	84
66	Nonâ€stationarity in long time series: some curious reversals in the â€~memory' effect. Hydrological Processes, 2007, 21, 3529-3531.	2.6	15
67	Inter-decadal variability in daily rainfall at Durham (UK) since the 1850s. International Journal of Climatology, 2007, 27, 945-956.	3.5	24
68	Durham University Observatory and its meteorological record. Weather, 2007, 62, 265-269.	0.7	3
69	Patterns of denitrification rates in European alluvial soils under various hydrological regimes. Freshwater Biology, 2007, 52, 252-266.	2.4	126
70	Do nitrogen inputs stimulate dissolved organic carbon production in upland peat bogs?. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	16
71	Floodplains in River Ecosystems. Water Quality Measurements Series, 2006, , 1-15.	0.1	2
72	Long-term changes in hydrological pathways in an upland peat catchment—recovery from severe drought?. Journal of Hydrology, 2006, 321, 5-20.	5.4	41

#	Article	IF	CITATIONS
73	Trends in Drought Frequency – the Fate of DOC Export From British Peatlands. Climatic Change, 2006, 76, 339-359.	3.6	61
74	A third paradox in catchment hydrology and biogeochemistry: decoupling in the riparian zone. Hydrological Processes, 2005, 19, 2087-2089.	2.6	47
75	Fluxes of dissolved carbon dioxide and inorganic carbon from an upland peat catchment: implications for soil respiration. Biogeochemistry, 2005, 73, 515-539.	3.5	58
76	Linking hydrology and biogeochemistry in complex landscapes. Progress in Physical Geography, 2005, 29, 297-316.	3.2	194
77	Predicting the future DOC flux from upland peat catchments. Journal of Hydrology, 2005, 300, 126-139.	5.4	82
78	Can climate change explain increases in DOC flux from upland peat catchments?. Science of the Total Environment, 2004, 326, 95-112.	8.0	158
79	Time series analysis of long-term river dissolved organic carbon records. Hydrological Processes, 2004, 18, 893-911.	2.6	109
80	Toward a conceptual model of floodplain water table response. Water Resources Research, 2004, 40, .	4.2	79
81	Long term records of riverine dissolved organic matter. Biogeochemistry, 2003, 64, 165-178.	3.5	164
82	Short-term nitrogen transformation rates in riparian wetland soil determined with nitrogen-15. Biology and Fertility of Soils, 2003, 38, 129-136.	4.3	32
83	Nitrogen Removal by Riparian Buffers along a European Climatic Gradient: Patterns and Factors of Variation. Ecosystems, 2003, 6, 0020-0030.	3.4	214
84	Monitoring change in hydrological systems. Science of the Total Environment, 2003, 310, 9-16.	8.0	29
85	Carbon budget for a British upland peat catchment. Science of the Total Environment, 2003, 312, 133-146.	8.0	155
86	Hydraulic conductivity in upland blanket peat: measurement and variability. Hydrological Processes, 2003, 17, 1227-1237.	2.6	118
87	Hydrological flowpaths and nitrate removal rates within a riparian floodplain along a fourth-order stream in Brittany (France). Hydrological Processes, 2003, 17, 1177-1195.	2.6	89
88	Hydrological studies on blanket peat: the significance of the acrotelm-catotelm model. Journal of Ecology, 2003, 91, 86-102.	4.0	161
89	Runoff production in blanket peat covered catchments. Water Resources Research, 2003, 39, .	4.2	150
90	Changes in stream nitrate concentrations due to land management practices, ecological succession, and climate: Developing a systems approach to integrated catchment response. Water Resources Research, 2003, 39, .	4.2	54

#	Article	IF	CITATIONS
91	Identification and Characterization of Pedogeomorphological Processes on a Hillslope. Soil Science Society of America Journal, 2002, 66, 1897-1910.	2.2	45
92	Infiltration, runoff and sediment production in blanket peat catchments: implications of field rainfall simulation experiments. Hydrological Processes, 2002, 16, 2537-2557.	2.6	95
93	Investigating contemporary and historical sediment inputs to Slapton Higher Ley: an analysis of the robustness of source ascription methods when applied to lake sediment data. Hydrological Processes, 2002, 16, 3467-3486.	2.6	11
94	Release of dissolved organic carbon from upland peat. Hydrological Processes, 2002, 16, 3487-3504.	2.6	118
95	Application of ground-penetrating radar to the identification of subsurface piping in blanket peat. Earth Surface Processes and Landforms, 2002, 27, 235-249.	2.5	98
96	Laboratory experiments on drought and runoff in blanket peat. European Journal of Soil Science, 2002, 53, 675-690.	3.9	58
97	Macroporosity and infiltration in blanket peat: the implications of tension disc infiltrometer measurements. Hydrological Processes, 2001, 15, 289-303.	2.6	83
98	Spatial distribution of chemical weathering intensity on an acid hillslope. Zeitschrift Für Geomorphologie, 2000, 44, 379-402.	0.8	4
99	Carbon Monoxide and Nitrogen Oxides Pollution in Moscow. Water, Air, and Soil Pollution, 1999, 112, 107-131.	2.4	15
100	The distribution of solute processes on an acid hillslope and the delivery of solutes to a stream: I. Exchangeable bases. Earth Surface Processes and Landforms, 1999, 24, 781-797.	2.5	10
101	The distribution of solute processes on an acid hillslope and the delivery of solutes to a stream: II. Exchangeable Al3+. Earth Surface Processes and Landforms, 1999, 24, 851-865.	2.5	5
102	Denitrification in riparian buffer zones: the role of floodplain hydrology. Hydrological Processes, 1999, 13, 1451-1463.	2.6	178
103	Denitrification in riparian buffer zones: the role of floodplain hydrology. Hydrological Processes, 1999, 13, 1451-1463.	2.6	129
104	Modelling the spatial variability in floodplain soil contamination during flood events to improve chemical mass balance estimates. , 1998, 12, 1233-1255.		21
105	Synoptic Climatology of Air Pollution in Moscow. Theoretical and Applied Climatology, 1998, 61, 85-102.	2.8	49
106	Long-term rainfall and streamflow records for north central England: putting the Environmental Change Network site at Moor House, Upper Teesdale, in context. Hydrological Sciences Journal, 1998, 43, 775-787.	2.6	58
107	Modelling the spatial variability in floodplain soil contamination during flood events to improve chemical mass balance estimates. Hydrological Processes, 1998, 12, 1233-1255.	2.6	1
108	POTASSIUM CHEMISTRY OF A SMALL UPLAND STREAM FOLLOWING A MAJOR DROUGHT. Hydrological Processes, 1997, 11, 189-201.	2.6	13

#	Article	IF	CITATIONS
109	Some aspects of the three-dimensional heat island in Moscow. International Journal of Climatology, 1997, 17, 1451-1465.	3.5	28
110	Rill erosion along the thalweg of a hillslope hollow: A case study from the cotswold hills, Central England. Earth Surface Processes and Landforms, 1994, 19, 377-385.	2.5	14
111	Role of floodplain sediments in reducing the nitrate concentration of subsurface run-off: A case study in the Cotswolds, UK. Hydrological Processes, 1993, 7, 287-295.	2.6	110
112	Flow frequency responses to hardwood-to-grass conversion and subsequent succession. Hydrological Processes, 1992, 6, 179-188.	2.6	46
113	Sediment yield and delivery in the blanket peat moorlands of the southern Pennines. Earth Surface Processes and Landforms, 1991, 16, 255-271.	2.5	84
114	Handling excess nitrates. Nature, 1990, 348, 291-291.	27.8	8
115	Stream nitrate levels in a small catchment in south west England over a period of 15 years (1970-1985). Hydrological Processes, 1988, 2, 267-284.	2.6	83
116	Stimulation from simulation? A teaching model of hillslope hydrology for use on microcomputers. Journal of Geography in Higher Education, 1986, 10, 23-39.	2.6	28
117	Topographic controls of soil moisture distributions. Journal of Soil Science, 1985, 36, 469-486.	1.2	287
118	Spatial variation in solutional denudation and soil moisture over a hillslope hollow. Earth Surface Processes and Landforms, 1983, 8, 151-160.	2.5	18
119	The effect of forestry drainage operations on upland sediment yields: The results of a storm-based study. Earth Surface Processes and Landforms, 1983, 8, 339-346.	2.5	39
120	The permanence of stream networks in britain: Some further comments. Earth Surface Processes and Landforms, 1982, 7, 327-332.	2.5	9
121	The contribution of throughflow to storm runoff: An evaluation of a chemical mixing model. Earth Surface Processes and Landforms, 1982, 7, 565-574.	2.5	36
122	Factors influencing the growth of miniature ice lenses. Earth Surface Processes and Landforms, 1981, 6, 179-182.	2.5	1
123	NITRATE LOSSES IN SOIL DRAINAGE WATERS IN RELATION TO WATER FLOW RATE ON A DECIDUOUS WOODLAND SITE. Journal of Soil Science, 1981, 32, 433-441.	1.2	14
124	The relationship between throughflow generation and the solute concentration of soil and stream water. Earth Surfaces Processes, 1979, 4, 257-266.	0.7	18
125	Analysis of spatial water quality and stream networks in the southern Cotswolds during and after the drought of 1976. Earth Surfaces Processes, 1978, 3, 59-69.	0.7	11
126	The role of topography in controlling throughflow generation. Earth Surfaces Processes, 1978, 3, 331-344.	0.7	307

#	Article	IF	CITATIONS
127	Toward more detailed field monitoring of variable source areas. Water Resources Research, 1978, 14, 1123-1131.	4.2	82
128	Spatial variations in rainfall and stream water quality around the Avonmouth industrial Complex. International Journal of Environmental Studies, 1977, 11, 205-209.	1.6	1
129	Hydraulic conductivity in frozen soils. Earth Surfaces Processes, 1976, 1, 349-360.	0.7	235
130	The Role of Floodplains in Mitigating Diffuse Nitrate Pollution. , 0, , 253-268.		2
131	Slopes: solute processes and landforms. Geological Society Memoir, 0, , M58-2021-5.	1.7	4