Iunio Iervolino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4347540/publications.pdf

Version: 2024-02-01

81900 110387 4,815 122 39 64 citations g-index h-index papers 132 132 132 2594 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	REXEL: computer aided record selection for code-based seismic structural analysis. Bulletin of Earthquake Engineering, 2010, 8, 339-362.	4.1	479
2	Record Selection for Nonlinear Seismic Analysis of Structures. Earthquake Spectra, 2005, 21, 685-713.	3.1	198
3	Ground motion duration effects on nonlinear seismic response. Earthquake Engineering and Structural Dynamics, 2006, 35, 21-38.	4.4	168
4	Spectral shape proxies and nonlinear structural response. Soil Dynamics and Earthquake Engineering, 2011, 31, 996-1008.	3.8	153
5	Ground Motion Record Selection Based on Broadband Spectral Compatibility. Earthquake Spectra, 2014, 30, 1427-1448.	3.1	136
6	Seismic risk of atmospheric storage tanks in the framework of quantitative risk analysis. Journal of Loss Prevention in the Process Industries, 2003, 16, 403-409.	3.3	130
7	Eurocode 8 Compliant Real Record Sets for Seismic Analysis of Structures. Journal of Earthquake Engineering, 2008, 12, 54-90.	2.5	128
8	Seismic Reliability of Code-Conforming Italian Buildings. Journal of Earthquake Engineering, 2018, 22, 5-27.	2.5	113
9	Quantitative risk analysis of oil storage facilities in seismic areas. Journal of Hazardous Materials, 2005, 123, 61-69.	12.4	107
10	Comparative Analysis of Multi riteria Decisionâ€Making Methods for Seismic Structural Retrofitting. Computer-Aided Civil and Infrastructure Engineering, 2009, 24, 432-445.	9.8	107
11	Flood risk assessment for informal settlements. Natural Hazards, 2013, 69, 1003-1032.	3.4	101
12	PGA and PGV Spatial Correlation Models Based on European Multievent Datasets. Bulletin of the Seismological Society of America, 2011, 101, 2532-2541.	2.3	95
13	Probability of Occurrence of Velocity Pulses in Near-Source Ground Motions. Bulletin of the Seismological Society of America, 2008, 98, 2262-2277.	2.3	91
14	Structural modeling uncertainties and their influence on seismic assessment of existing RC structures. Structural Safety, 2010, 32, 220-228.	5. 3	88
15	SPO2FRAG: software for seismic fragility assessment based on static pushover. Bulletin of Earthquake Engineering, 2017, 15, 4399-4425.	4.1	83
16	Multi-Criteria Decision Making for Seismic Retrofitting of RC Structures. Journal of Earthquake Engineering, 2008, 12, 555-583.	2.5	75
17	Comparing vector-valued intensity measures for fragility analysis of steel frames in the case of narrow-band ground motions. Engineering Structures, 2012, 45, 472-480.	5.3	74
18	Spectral shape-based assessment of SDOF nonlinear response to real, adjusted and artificial accelerograms. Engineering Structures, 2010, 32, 2776-2792.	5. 3	66

#	Article	IF	CITATIONS
19	Nearâ€source seismic demand and pulseâ€like records: A discussion for L'Aquila earthquake. Earthquake Engineering and Structural Dynamics, 2010, 39, 1039-1062.	4.4	66
20	Spatial Correlation of Spectral Acceleration in European Data. Bulletin of the Seismological Society of America, 2012, 102, 2781-2788.	2.3	65
21	Inelastic displacement ratio of nearâ€source pulseâ€like ground motions. Earthquake Engineering and Structural Dynamics, 2012, 41, 2351-2357.	4.4	64
22	Assessing uncertainty in estimation of seismic response for PBEE. Earthquake Engineering and Structural Dynamics, 2017, 46, 1711-1723.	4.4	64
23	The Central Italy Seismic Sequence between August and December 2016: Analysis of Strongâ€Motion Observations. Seismological Research Letters, 2017, 88, 1219-1231.	1.9	61
24	Sequence-Based Probabilistic Seismic Hazard Analysis. Bulletin of the Seismological Society of America, 2014, 104, 1006-1012.	2.3	59
25	Seismic soil classification of Italy based on surface geology and shear-wave velocity measurements. Soil Dynamics and Earthquake Engineering, 2019, 122, 79-93.	3.8	59
26	Engineering design earthquakes from multimodal hazard disaggregation. Soil Dynamics and Earthquake Engineering, 2011, 31, 1212-1231.	3.8	57
27	Nearâ€source seismic hazard and design scenarios. Earthquake Engineering and Structural Dynamics, 2013, 42, 603-622.	4.4	57
28	Nearâ€optimal piecewise linear fits of static pushover capacity curves for equivalent SDOF analysis. Earthquake Engineering and Structural Dynamics, 2013, 42, 523-543.	4.4	56
29	Simulationâ€Based Seismic Risk Assessment of Gas Distribution Networks. Computer-Aided Civil and Infrastructure Engineering, 2015, 30, 508-523.	9.8	56
30	REASSESS V2.0: software for single- and multi-site probabilistic seismic hazard analysis. Bulletin of Earthquake Engineering, 2019, 17, 1769-1793.	4.1	54
31	Knowledge-Based Performance Assessment of Existing RC Buildings. Journal of Earthquake Engineering, 2011, 15, 362-389.	2.5	50
32	Closedâ€form aftershock reliability of damageâ€cumulating elasticâ€perfectlyâ€plastic systems. Earthquake Engineering and Structural Dynamics, 2014, 43, 613-625.	4.4	50
33	Gamma degradation models for earthquake-resistant structures. Structural Safety, 2013, 45, 48-58.	5. 3	45
34	Validation of groundâ€motion simulations for historical events using MDoF systems. Earthquake Engineering and Structural Dynamics, 2013, 42, 1395-1412.	4.4	45
35	FRAGILITY OF STANDARD INDUSTRIAL STRUCTURES BY A RESPONSE SURFACE BASED METHOD. Journal of Earthquake Engineering, 2004, 8, 927-945.	2.5	44
36	Vulnerability Analysis for Gravity Load Designed RC Buildings in Naples – Italy. Journal of Earthquake Engineering, 2008, 12, 234-245.	2.5	43

#	Article	IF	CITATIONS
37	Engineering ground motion record selection in the ITalian ACcelerometric Archive. Bulletin of Earthquake Engineering, 2011, 9, 1761-1778.	4.1	43
38	Seismic risk of R.C. building classes. Engineering Structures, 2007, 29, 813-820.	5. 3	42
39	Uncertainty in early warning predictions of engineering ground motion parameters: What really matters?. Geophysical Research Letters, 2009, 36, .	4.0	40
40	Conditional Hazard Maps for Secondary Intensity Measures. Bulletin of the Seismological Society of America, 2010, 100, 3312-3319.	2.3	39
41	REAL-TIME RISK ANALYSIS FOR HYBRID EARTHQUAKE EARLY WARNING SYSTEMS. Journal of Earthquake Engineering, 2006, 10, 867-885.	2.5	38
42	Markovian modeling of seismic damage accumulation. Earthquake Engineering and Structural Dynamics, 2016, 45, 441-461.	4.4	38
43	NESS1: A Worldwide Collection of Strongâ€Motion Data to Investigate Nearâ€Source Effects. Seismological Research Letters, 2018, 89, 2299-2313.	1.9	38
44	Case Study: Seismic Retrofitting of a Medieval Bell Tower with FRP. Journal of Composites for Construction, 2007, 11, 319-327.	3.2	37
45	Performance-based earthquake early warning. Soil Dynamics and Earthquake Engineering, 2011, 31, 209-222.	3.8	37
46	On the number of records for structural risk estimation in PBEE. Earthquake Engineering and Structural Dynamics, 2019, 48, 489-506.	4.4	37
47	R2R-EU: Software for fragility fitting and evaluation of estimation uncertainty in seismic risk analysis. Soil Dynamics and Earthquake Engineering, 2020, 132, 106093.	3.8	37
48	Expected loss-based alarm threshold set for earthquake early warning systems. Earthquake Engineering and Structural Dynamics, 2007, 36, 1151-1168.	4.4	36
49	A Note on Selection of Time-Histories for Seismic Analysis of Bridges in Eurocode 8. Journal of Earthquake Engineering, 2009, 13, 1125-1152.	2.5	35
50	Physics-based seismic input for engineering applications: a case study in the Aterno river valley, Central Italy. Bulletin of Earthquake Engineering, 2017, 15, 2645-2671.	4.1	35
51	Validation of Ground-Motion Simulations for Historical Events Using SDoF Systems. Bulletin of the Seismological Society of America, 2012, 102, 2727-2740.	2.3	34
52	RINTC PROJECT - ASSESSING THE (IMPLICIT) SEISMIC RISK OF CODE-CONFORMING STRUCTURES IN ITALY. , 2017, , .		32
53	Seismic damage accumulation in multiple mainshock–aftershock sequences. Earthquake Engineering and Structural Dynamics, 2020, 49, 1007-1027.	4.4	31
54	Disaggregation-based response weighting scheme for seismic risk assessment of structures. Soil Dynamics and Earthquake Engineering, 2010, 30, 1513-1527.	3.8	30

#	Article	IF	Citations
55	Prediction of response spectra via real-time earthquake measurements. Soil Dynamics and Earthquake Engineering, 2008, 28, 492-505.	3.8	27
56	Performance of the L'Aquila (central Italy) gas distribution network in the 2009 () Tj ETQq0 0 0 rgBT /Overlock 2447-2466.	10 Tf 50 1 4.1	707 Td (\$\$n 27
57	Estimation uncertainty for some common seismic fragility curve fitting methods. Soil Dynamics and Earthquake Engineering, 2022, 152, 107068.	3.8	27
58	A Review of Ground Motion Record Selection Strategies for Dynamic Structural Analysis. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2008, , 131-163.	0.6	26
59	Seismic actions on structures in the near-source region of the 2016 central Italy sequence. Bulletin of Earthquake Engineering, 2019, 17, 5429-5447.	4.1	26
60	Operational (Shortâ€Term) Earthquake Loss Forecasting in Italy. Bulletin of the Seismological Society of America, 2015, 105, 2286-2298.	2.3	24
61	Importance of Mapping Design Earthquakes: Insights for the Southern Apennines, Italy. Bulletin of the Seismological Society of America, 2009, 99, 2979-2991.	2.3	21
62	The displacement coefficient method in nearâ€source conditions. Earthquake Engineering and Structural Dynamics, 2015, 44, 1015-1033.	4.4	21
63	Dynamic analysis of single-degree-of-freedom systems (DYANAS): A graphical user interface for OpenSees. Engineering Structures, 2018, 177, 395-408.	5.3	21
64	Seismic Fragility of Code-conforming Italian Buildings Based on SDoF Approximation. Journal of Earthquake Engineering, 2021, 25, 2873-2907.	2.5	21
65	When Is the Probability of a Large Earthquake Too Small?. Seismological Research Letters, 2015, 86, 1674-1678.	1.9	20
66	Framework for Seismic Hazard Analysis of Spatially Distributed Systems. Geotechnical, Geological and Earthquake Engineering, 2014, , 57-88.	0.2	20
67	Elastic period of sub-standard reinforced concrete moment resisting frame buildings. Bulletin of Earthquake Engineering, 2010, 8, 955-972.	4.1	19
68	Reliability of structures to earthquake clusters. Bulletin of Earthquake Engineering, 2015, 13, 983-1002.	4.1	19
69	Analytical modelling of nearâ€source pulseâ€like seismic demand for multiâ€linear backbone oscillators. Earthquake Engineering and Structural Dynamics, 2016, 45, 1797-1815.	4.4	19
70	Foreword to the Special Issue for the RINTC (The Implicit Seismic Risk of Code-Conforming Structures) Project. Journal of Earthquake Engineering, 2018, 22, 1-4.	2.5	18
71	On-site structure-specific real-time risk assessment: perspectives from the REAKT project. Bulletin of Earthquake Engineering, 2016, 14, 2471-2493.	4.1	17
72	Quantitative risk analysis for the Amerigo Vespucci (Florence, Italy) airport including domino effects. Safety Science, 2019, 113, 472-489.	4.9	17

#	Article	IF	CITATIONS
73	Seismic reliability implied by behaviorâ€factorâ€based design. Earthquake Engineering and Structural Dynamics, 2021, 50, 4076-4096.	4.4	17
74	NODE: a largeâ€scale seismic risk prioritization tool for Italy based on nominal structural performance. Bulletin of Earthquake Engineering, 2021, 19, 2763-2796.	4.1	16
7 5	Italian vs. worldwide history of largest PGA and PGV. Annals of Geophysics, 2017, 60, .	1.0	16
76	On Multisite Probabilistic Seismic Hazard Analysis. Bulletin of the Seismological Society of America, 2016, 106, 1223-1234.	2.3	15
77	Evolution of Seismic Reliability of Code-Conforming Italian Buildings. Journal of Earthquake Engineering, 2023, 27, 1740-1768.	2.5	15
78	Peakâ€overâ€threshold: Quantifying ground motion beyond design. Earthquake Engineering and Structural Dynamics, 2020, 49, 458-478.	4.4	14
79	Intensity measure conversion of fragility curves. Earthquake Engineering and Structural Dynamics, 2020, 49, 607-629.	4.4	14
80	Comparative assessment of load–resistance factor design of FRP-reinforced cross sections. Construction and Building Materials, 2012, 34, 151-161.	7.2	13
81	Soilâ€Invariant Seismic Hazard and Disaggregation. Bulletin of the Seismological Society of America, 2016, 106, 1900-1907.	2.3	13
82	Which Earthquakes are Expected to Exceed the Design Spectra?. Earthquake Spectra, 2019, 35, 1465-1483.	3.1	13
83	REASSESS V1.0: A COMPUTATIONALLY-EFFICIENT SOFTWARE FOR PROBABILISTIC SEISMIC HAZARD ANALYSIS. , 2016, , .		13
84	On-site early-warning system for Bishkek (Kyrgyzstan). Annals of Geophysics, 2015, 58, .	1.0	12
85	Generalized Earthquake Counting Processes for Sequenceâ€Based Hazard. Bulletin of the Seismological Society of America, 2019, 109, 1435-1450.	2.3	11
86	Sequence-based hazard analysis for Italy considering a grid seismic source model. Annals of Geophysics, 2021, 64, .	1.0	11
87	Rarity, proximity, and design actions: mapping strong earthquakes in Italy. Annals of Geophysics, 2020, 63, .	1.0	11
88	The effect of spatial dependence on hazard validation. Geophysical Journal International, 2017, 209, 1363-1368.	2.4	10
89	Aftershocks' Effect on Structural Design Actions in Italy. Bulletin of the Seismological Society of America, 0, , .	2.3	9
90	Evaluating A New Proxy For Spectral Shape To Be Used As An Intensity Measure. AIP Conference Proceedings, 2008, , .	0.4	8

#	Article	IF	Citations
91	Earthquake Early Warning and Engineering Application Prospects. , 2007, , 233-247.		8
92	The peak over the design threshold in strong earthquakes. Bulletin of Earthquake Engineering, 2019, 17, 1145-1161.	4.1	6
93	SPO2FRAG V1.0: SOFTWARE FOR PUSHOVER-BASED DERIVATION OF SEISMIC FRAGILITY CURVES., 2016, , .		6
94	About Knowledge and Responsibility in Probabilistic Seismic Risk Management. Seismological Research Letters, 2016, 87, 1161-1166.	1.9	5
95	Exceedance of design actions in epicentral areas: insights from the ShakeMap envelopes for the 2016–2017 central Italy sequence. Bulletin of Earthquake Engineering, 2021, 19, 5391-5414.	4.1	5
96	Engineering seismic demand in the 2012 Emilia sequence: preliminary analysis and model compatibility assessment. Annals of Geophysics, 2012, 55, .	1.0	5
97	The Crywolf Issue in Earthquake Early Warning Applications for the Campania Region. , 2007, , 211-232.		5
98	Ground-Motion Observations and Probabilistic Seismic Hazard: Frequently Asked Questions. Seismological Research Letters, 2022, 93, 2360-2366.	1.9	5
99	Title is missing!. Journal of Earthquake Engineering, 2004, 8, 927.	2.5	4
100	Operational earthquake loss forecasting: a retrospective analysis of some recent Italian seismic sequences. Bulletin of Earthquake Engineering, 2016, 14, 2607-2626.	4.1	4
101	Fatality rates implied by the Italian building code. Earthquake Engineering and Structural Dynamics, 2021, 50, 3083-3089.	4.4	4
102	Empirical assessment of seismic design hazard's exceedance area. Scientific Reports, 2021, 11, 18803.	3.3	4
103	Preliminary engineering analysis of the August 24th 2016, ML 6.0 central Italy earthquake records. Annals of Geophysics, 2016, 59, .	1.0	4
104	Residential code-conforming structural seismic risk maps for Italy. Soil Dynamics and Earthquake Engineering, 2022, 153, 107104.	3.8	4
105	Seismic risk analysis of a data communication network. Sustainable and Resilient Infrastructure, 2022, 7, 655-672.	2.8	4
106	Title is missing!. Journal of Earthquake Engineering, 2006, 10, 867.	2.5	3
107	Reconciling Eurocode 8 Part 1 and Part 2 Two-component Record Selection. Journal of Earthquake Engineering, 0, , 1-25.	2.5	3
108	Damage mitigation by innovative materials for Temple C at Selinunte. Construction and Building Materials, 2006, 20, 1040-1048.	7.2	2

#	Article	IF	Citations
109	Macroseismic intensity hazard maps for Italy based on a recent grid source model. Bulletin of Earthquake Engineering, 2022, 20, 2245-2258.	4.1	2
110	What Is an Exceptional Earthquake?. Seismological Research Letters, 0, , .	1.9	1
111	Earthquake Early Warning System in Southern Italy. , 2011, , 175-201.		1
112	Accounting for Near-Source Effects in the Displacement Coefficient Method for Seismic Structural Assessment., 2013,,.		1
113	Sequence-Based Hazard Maps for the United Kingdom. Bulletin of the Seismological Society of America, 2022, 112, 2124-2140.	2.3	1
114	Design Earthquakes and Conditional Hazard. , 2011, , 41-56.		0
115	<i>Erratum to</i> Operational (Shortâ€√erm) Earthquake Loss Forecasting in Italy. Bulletin of the Seismological Society of America, 2016, 106, 814-815.	2.3	О
116	Discussion of "Areal exceedance of ground motion as a characteristic of multiple-site seismic hazard: Sensitivity analysis―by V. Sokolov, F. Wenzel [Soil Dyn. Earthq. Eng. 126 (2019), Article 105752]. Soil Dynamics and Earthquake Engineering, 2020, 128, 105862.	3.8	0
117	Comparing Short-Term Seismic and COVID-19 Fatality Risks in Italy. Seismological Research Letters, 2021, 92, 2382-2388.	1.9	O
118	Real, Scaled, Adjusted and Artificial Records: A Displacement and Cyclic Response Assessment. Geotechnical, Geological and Earthquake Engineering, 2010, , 39-47.	0.2	0
119	UNA MEDIDA DE INTENSIDAD SÃSMICA BASADA EN UN PARÃMETRO PARA CARACTERIZAR LA FORMA ESPECTRAL DENOMINADO Np. Revista De IngenierÃa SÃsmica, 2012, , 1-26.	0.1	О
120	Application to L'Aquila Gas Network. Geotechnical, Geological and Earthquake Engineering, 2014, , 283-299.	0.2	0
121	L'Aquila Earthquake: A Wake-Up Call for European Research and Codes. Geotechnical, Geological and Earthquake Engineering, 2014, , 129-142.	0.2	0
122	Erratum to On Multisite Probabilistic Seismic Hazard Analysis. Bulletin of the Seismological Society of America, 2017, 107, 2540-2540.	2.3	0