Kenjyo Miyauchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4347307/publications.pdf

Version: 2024-02-01

28 papers 2,068 citations

304743 22 h-index 501196 28 g-index

28 all docs 28 docs citations

times ranked

28

2683 citing authors

#	Article	IF	CITATIONS
1	Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes and Development, 2009, 23, 433-438.	5.9	378
2	The $3\hat{a}\in^2$ termini of mouse Piwi-interacting RNAs are $2\hat{a}\in^2$ -O-methylated. Nature Structural and Molecular Biology, 2007, 14, 349-350.	8.2	202
3	ALKBH1 is an RNA dioxygenase responsible for cytoplasmic and mitochondrial tRNA modifications. Nucleic Acids Research, 2017, 45, 7401-7415.	14.5	180
4	A cyclic form of N6-threonylcarbamoyladenosine as a widely distributed tRNA hypermodification. Nature Chemical Biology, 2013, 9, 105-111.	8.0	147
5	Cloning and Sequencing of a 2,5-Dichlorohydroquinone Reductive Dehalogenase Gene Whose Product Is Involved in Degradation of l³-Hexachlorocyclohexane by <i>Sphingomonas paucimobilis</i>)i>. Journal of Bacteriology, 1998, 180, 1354-1359.	2.2	111
6	Cloning and Sequencing of a Novel meta -Cleavage Dioxygenase Gene Whose Product Is Involved in Degradation of l³-Hexachlorocyclohexane in Sphingomonas paucimobilis. Journal of Bacteriology, 1999, 181, 6712-6719.	2.2	111
7	Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2764-2769.	7.1	93
8	CO2-sensitive tRNA modification associated with human mitochondrial disease. Nature Communications, 2018, 9, 1875.	12.8	87
9	A Single Acetylation of 18 S rRNA Is Essential for Biogenesis of the Small Ribosomal Subunit in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2014, 289, 26201-26212.	3.4	76
10	Automated parallel isolation of multiple species of non-coding RNAs by the reciprocal circulating chromatography method. Nucleic Acids Research, 2007, 35, e24.	14.5	74
11	Discovery and characterization of tRNA ^{lle} lysidine synthetase (TilS). FEBS Letters, 2010, 584, 272-277.	2.8	69
12	Nucleoside Analysis by Hydrophilic Interaction Liquid Chromatography Coupled with Mass Spectrometry. Methods in Enzymology, 2015, 560, 19-28.	1.0	61
13	Biogenesis and growth phase-dependent alteration of 5-methoxycarbonylmethoxyuridine in tRNA anticodons. Nucleic Acids Research, 2016, 44, 509-523.	14.5	49
14	Identification of 2-methylthio cyclic N6-threonylcarbamoyladenosine (ms2ct6A) as a novel RNA modification at position 37 of tRNAs. Nucleic Acids Research, 2017, 45, 2124-2136.	14.5	48
15	Acetate-dependent tRNA acetylation required for decoding fidelity in protein synthesis. Nature Chemical Biology, 2018, 14, 1010-1020.	8.0	43
16	Discovery of the β-barrel–type RNA methyltransferase responsible for <i>N</i> ⁶ -threonylcarbamoyladenosine in tRNAs. Nucleic Acids Research, 2014, 42, 9350-9365.	14.5	42
17	A hydantoin isoform of cyclic N6-threonylcarbamoyladenosine (ct6A) is present in tRNAs. Nucleic Acids Research, 2017, 45, 2137-2149.	14.5	40
18	Biogenesis and functions of aminocarboxypropyluridine in tRNA. Nature Communications, 2019, 10, 5542.	12.8	39

#	Article	IF	CITATIONS
19	Decoding system for the AUA codon by tRNA lle with the UAU anticodon in Mycoplasma mobile. Nucleic Acids Research, 2013, 41, 2621-2631.	14.5	36
20	Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance. Nature, 2022, 605, 372-379.	27.8	35
21	Epigenetic loss of the transfer RNA-modifying enzyme TYW2 induces ribosome frameshifts in colon cancer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20785-20793.	7.1	31
22	Loss of Ftsj1 perturbs codon-specific translation efficiency in the brain and is associated with X-linked intellectual disability. Science Advances, 2021, 7 , .	10.3	30
23	Taurine-containing Uridine Modifications in tRNA Anticodons Are Required to Decipher Non-universal Genetic Codes in Ascidian Mitochondria. Journal of Biological Chemistry, 2011, 286, 35494-35498.	3.4	20
24	Hydroxylation of a conserved tRNA modification establishes non-universal genetic code in echinoderm mitochondria. Nature Structural and Molecular Biology, 2017, 24, 778-782.	8.2	18
25	An ancient type of MnmA protein is an iron–sulfur cluster-dependent sulfurtransferase for tRNA anticodons. Rna, 2020, 26, 240-250.	3.5	17
26	Regulation of gene expression via retrotransposon insertions and the noncoding <scp>RNA</scp> 4.5S <scp>RNA_H</scp> . Genes To Cells, 2015, 20, 887-901.	1.2	15
27	Decoding Mechanism of Non-universal Genetic Codes in Loligo bleekeri Mitochondria. Journal of Biological Chemistry, 2013, 288, 7645-7652.	3.4	8
28	The Effect of tRNA[Ser]Sec Isopentenylation on Selenoprotein Expression. International Journal of Molecular Sciences, 2021, 22, 11454.	4.1	8