
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4347157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Platelet-Released Growth Factors Influence Wound Healing-Associated Genes in Human Keratinocytes and Ex Vivo Skin Explants. International Journal of Molecular Sciences, 2022, 23, 2827.	1.8	8
2	Staphylococcus epidermidis-Derived Protease Esp Mediates Proteolytic Activation of Pro‒IL-1β in Human Keratinocytes. Journal of Investigative Dermatology, 2022, 142, 2756-2765.e8.	0.3	4
3	<i>Staphylococcus aureus</i> Activates the Aryl Hydrocarbon Receptor in Human Keratinocytes. Journal of Innate Immunity, 2022, 14, 582-592.	1.8	2
4	Skin Care Product Rich in Antioxidants and Anti-Inflammatory Natural Compounds Reduces Itching and Inflammation in the Skin of Atopic Dermatitis Patients. Antioxidants, 2022, 11, 1071.	2.2	9
5	Expression of epidermal antimicrobial peptides is increased in tinea pedis. Mycoses, 2021, 64, 763-770.	1.8	3
6	Free human DNA attenuates the activity of antimicrobial peptides in atopic dermatitis. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3145-3154.	2.7	3
7	Antimicrobial peptides and proteins: Interaction with the skin microbiota. Experimental Dermatology, 2021, 30, 1496-1508.	1.4	15
8	Platelet-Released Growth Factors Induce Genes Involved in Extracellular Matrix Formation in Human Fibroblasts. International Journal of Molecular Sciences, 2021, 22, 10536.	1.8	6
9	Deficiency in X-linked inhibitor of apoptosis protein promotes susceptibility to microbial triggers of intestinal inflammation. Science Immunology, 2021, 6, eabf7473.	5.6	15
10	Skin microbiota analysis in human 3D skin models—"Free your mice― Experimental Dermatology, 2020, 29, 1133-1139.	1.4	15
11	Vivostat Platelet-Rich Fibrin® for Complicated or Chronic Wounds—A Pilot Study. Biomedicines, 2020, 8, 276.	1.4	8
12	Influence of disulfide bonds in human beta defensin-3 on its strain specific activity against Gram-negative bacteria. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183273.	1.4	17
13	Platelet-Released Growth Factors and Platelet-Rich Fibrin Induce Expression of Factors Involved in Extracellular Matrix Organization in Human Keratinocytes. International Journal of Molecular Sciences, 2020, 21, 4404.	1.8	12
14	RNase 7 Promotes Sensing of Self-DNA by Human Keratinocytes and Activates an Antiviral Immune Response. Journal of Investigative Dermatology, 2020, 140, 1589-1598.e3.	0.3	10
15	Dysregulated Expression of Antimicrobial Peptides in Skin Lesions of Patients with Cutaneous T-cell Lymphoma. Acta Dermato-Venereologica, 2020, 100, 1-6.	0.6	2
16	Antimicrobial peptides in patients with anorexia nervosa: comparison with healthy controls and the impact of weight gain. Scientific Reports, 2020, 10, 22223.	1.6	2
17	The Antimicrobial and Immunomodulatory Function of RNase 7 in Skin. Frontiers in Immunology, 2019, 10, 2553.	2.2	31
18	<i>Staphylococcus epidermidis</i> Activates Aryl Hydrocarbon Receptor Signaling in Human Keratinocytes: Implications for Cutaneous Defense. Journal of Innate Immunity, 2019, 11, 125-135	1.8	30

#	Article	IF	CITATIONS
19	Staphylococcus epidermidis-induced Interleukin-1 Beta and Human Beta-defensin-2 Expression in Human Keratinocytes is Regulated by the Host Molecule A20 (TNFAIP3). Acta Dermato-Venereologica, 2019, 99, 181-187.	0.6	16
20	Skin microbiota and human 3D skin models. Experimental Dermatology, 2018, 27, 489-494.	1.4	39
21	RNase 7 Strongly Promotes TLR9-Mediated DNA Sensing by Human Plasmacytoid Dendritic Cells. Journal of Investigative Dermatology, 2018, 138, 872-881.	0.3	35
22	Platelet-released growth factors inhibit proliferation of primary keratinocytes in vitro. Annals of Anatomy, 2018, 215, 1-7.	1.0	11
23	Platelet-released growth factors induce psoriasin in keratinocytes: Implications for the cutaneous barrier. Annals of Anatomy, 2017, 213, 25-32.	1.0	15
24	<scp>RN</scp> ase 7 downregulates <scp>TH</scp> 2 cytokine production by activated human T cells. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1694-1703.	2.7	16
25	RNase 7 participates in cutaneous innate control of Corynebacterium amycolatum. Scientific Reports, 2017, 7, 13862.	1.6	9
26	The serine protease inhibitor of Kazal-type 7 (SPINK7) is expressed in human skin. Archives of Dermatological Research, 2017, 309, 767-771.	1.1	10
27	The role of <scp>RN</scp> ase 7 in innate cutaneous defense against <i>Pseudomonas aeruginosa</i> . Experimental Dermatology, 2017, 26, 227-233.	1.4	13
28	Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes. Mediators of Inflammation, 2017, 2017, 1-12.	1.4	13
29	The Antimicrobial Peptide Human Beta-Defensin-3 Is Induced by Platelet-Released Growth Factors in Primary Keratinocytes. Mediators of Inflammation, 2017, 2017, 1-8.	1.4	16
30	RNase 7 in Cutaneous Defense. International Journal of Molecular Sciences, 2016, 17, 560.	1.8	30
31	Targeted Resequencing and Functional Testing Identifies Low-Frequency Missense Variants in the Gene Encoding GARP as Significant Contributors to Atopic Dermatitis Risk. Journal of Investigative Dermatology, 2016, 136, 2380-2386.	0.3	32
32	Plateletâ€released growth factors induce the antimicrobial peptide human betaâ€defensinâ€⊋ in primary keratinocytes. Experimental Dermatology, 2016, 25, 460-465.	1.4	33
33	AMPâ€lification of wound healing. Experimental Dermatology, 2016, 25, 592-593.	1.4	0
34	Tick saliva: paving the way for the stowaway <i>Borrelia</i> . Experimental Dermatology, 2016, 25, 20-21.	1.4	1
35	Differential expression of antimicrobial peptides in psoriasis and psoriatic arthritis as a novel contributory mechanism for skin and joint disease heterogeneity. Scandinavian Journal of Rheumatology, 2016, 45, 188-196.	0.6	22
36	The Inflammasome and the Epidermal Growth Factor Receptor (EGFR) Are Involved in the Staphylococcus aureus-Mediated Induction of IL-1alpha and IL-1beta in Human Keratinocytes. PLoS ONE, 2016, 11, e0147118.	1.1	20

#	Article	IF	CITATIONS
37	Basal Cells Contribute to Innate Immunity of the Airway Epithelium through Production of the Antimicrobial Protein RNase 7. Journal of Immunology, 2015, 194, 3340-3350.	0.4	60
38	A genome-wide association study reveals 2 new susceptibility loci for atopic dermatitis. Journal of Allergy and Clinical Immunology, 2015, 136, 802-806.	1.5	51
39	Human skin engages different epidermal layers to provide distinct innate defense mechanisms. Experimental Dermatology, 2014, 23, 230-231.	1.4	13
40	Decreased Susceptibility of Staphylococcus aureus Small-Colony Variants toward Human Antimicrobial Peptides. Journal of Investigative Dermatology, 2014, 134, 2347-2350.	0.3	42
41	The Pattern Recognition Receptor NOD2 Mediates Staphylococcus aureus –Induced IL-17C Expression in Keratinocytes. Journal of Investigative Dermatology, 2014, 134, 374-380.	0.3	59
42	An Integrated Epigenetic and Transcriptomic Analysis Reveals Distinct Tissue-Specific Patterns of DNA Methylation Associated with Atopic Dermatitis. Journal of Investigative Dermatology, 2014, 134, 1873-1883.	0.3	103
43	Bacterial soft tissue infection in psoriasis despite induction of epidermal antimicrobial peptides. Experimental Dermatology, 2014, 23, 862-864.	1.4	6
44	Infection of Keratinocytes with Trichophytum rubrum Induces Epidermal Growth Factor-Dependent RNase 7 and Human Beta-Defensin-3 Expression. PLoS ONE, 2014, 9, e93941.	1.1	29
45	Prenatal human skin expresses the antimicrobial peptide RNase 7. Archives of Dermatological Research, 2013, 305, 545-549.	1.1	12
46	The skin surface as antimicrobial barrier: present concepts and future outlooks. Experimental Dermatology, 2013, 22, 1-5.	1.4	85
47	What is the role of antimicrobial peptides (<scp>AMP</scp>) in acne vulgaris?. Experimental Dermatology, 2013, 22, 386-391.	1.4	46
48	Epidermal EGFR Controls Cutaneous Host Defense and Prevents Inflammation. Science Translational Medicine, 2013, 5, 199ra111.	5.8	197
49	Expression of antimicrobial peptides in atopic dermatitis and possible immunoregulatory functions. Current Opinion in Allergy and Clinical Immunology, 2013, 13, 531-536.	1.1	50
50	<i><scp>S</scp>taphylococcus aureus</i> subverts cutaneous defense by <scp>d</scp> â€alanylation of teichoic acids. Experimental Dermatology, 2013, 22, 294-296.	1.4	31
51	Differential expression and <i>in vivo</i> secretion of the antimicrobial peptides psoriasin (S100A7), <scp>RN</scp> ase 7, human betaâ€defensinâ€2 and â€3 in healthy human skin. Experimental Dermatology, 2013 22, 364-366.	3,1.4	41
52	IL-17A and IFN-Î ³ Synergistically Induce RNase 7 Expression via STAT3 in Primary Keratinocytes. PLoS ONE, 2013, 8, e59531.	1.1	41
53	Paraoxonase 2 Acts as a Quorum Sensing–Quenching Factor in Human Keratinocytes. Journal of Investigative Dermatology, 2012, 132, 2296-2299.	0.3	15
54	Susceptibility of Staphylococcus aureus bacteremia strains to different skin-derived antimicrobial proteins. Archives of Dermatological Research, 2012, 304, 633-637.	1.1	6

#	Article	IF	CITATIONS
55	Antimicrobial RNases in Cutaneous Defense. Journal of Innate Immunity, 2012, 4, 241-247.	1.8	36
56	Cytosolic DNA Triggers Inflammasome Activation in Keratinocytes in Psoriatic Lesions. Science Translational Medicine, 2011, 3, 82ra38.	5.8	342
57	Ribonuclease 7 is a potent antimicrobial peptide within the human urinary tract. Kidney International, 2011, 80, 174-180.	2.6	102
58	Expression and Regulation of Antimicrobial Peptide Psoriasin (S100A7) at the Ocular Surface and in the Lacrimal Apparatus. , 2011, 52, 4914.		46
59	Differential suppression of epidermal antimicrobial protein expression in atopic dermatitis and in EFAD mice by pimecrolimus compared to corticosteroids. Experimental Dermatology, 2011, 20, 783-788.	1.4	39
60	Psoriasin: key molecule of the cutaneous barrier?. JDDG - Journal of the German Society of Dermatology, 2011, 9, 897-902.	0.4	14
61	Psoriasin: Schlüsselsubstanz bei der BarriereschÃ d igung?. JDDG - Journal of the German Society of Dermatology, 2011, 9, 897-903.	0.4	1
62	Mechanical and Metabolic Injury to the Skin Barrier Leads to Increased Expression of Murine β-Defensin-1, -3, and -14. Journal of Investigative Dermatology, 2011, 131, 443-452.	0.3	54
63	Differential expression pattern of antimicrobial peptides in nasal mucosa and secretion. Rhinology, 2011, 49, 107-111.	0.7	39
64	Human β-defensin-2 increases cholinergic response in colon epithelium. Pflugers Archiv European Journal of Physiology, 2010, 460, 177-186.	1.3	5
65	Differential expression of antimicrobial peptides in margins of chronic wounds. Experimental Dermatology, 2010, 19, 628-632.	1.4	61
66	Enhanced Expression and Secretion of Antimicrobial Peptides in Atopic Dermatitis and after Superficial Skin Injury. Journal of Investigative Dermatology, 2010, 130, 1355-1364.	0.3	212
67	RNase 7 Protects Healthy Skin from Staphylococcus aureus Colonization. Journal of Investigative Dermatology, 2010, 130, 2836-2838.	0.3	69
68	RNase 7 Contributes to the Cutaneous Defense against Enterococcus faecium. PLoS ONE, 2009, 4, e6424.	1.1	77
69	Human hair follicle epithelium has an antimicrobial defence system that includes the inducible antimicrobial peptide psoriasin (S100A7) and RNase 7. British Journal of Dermatology, 2009, 161, 78-89.	1.4	65
70	The Antimicrobial Protein Psoriasin (S100A7) Is Upregulated in Atopic Dermatitis and after Experimental Skin Barrier Disruption. Journal of Investigative Dermatology, 2009, 129, 641-649.	0.3	174
71	Highly Complex Peptide Aggregates of the S100 Fused-Type Protein Hornerin Are Present in Human Skin. Journal of Investigative Dermatology, 2009, 129, 1446-1458.	0.3	58
72	Functional Expression of the Intracellular Pattern Recognition Receptor NOD1 in Human Keratinocytes. Journal of Investigative Dermatology, 2009, 129, 1299-1302.	0.3	26

#	Article	IF	CITATIONS
73	Degradation by Stratum Corneum Proteases Prevents Endogenous RNase Inhibitor from Blocking Antimicrobial Activities of RNase 5 and RNase 7. Journal of Investigative Dermatology, 2009, 129, 2193-2201.	0.3	45
74	Uncovering the evolutionary history of innate immunity: The simple metazoan Hydra uses epithelial cells for host defence. Developmental and Comparative Immunology, 2009, 33, 559-569.	1.0	195
75	UV-B radiation induces the expression of antimicrobial peptides in human keratinocytes in vitro and in vivo. Journal of Allergy and Clinical Immunology, 2009, 123, 1117-1123.	1.5	179
76	Activation of the Nlrp3 Inflammasome by <i>Streptococcus pyogenes</i> Requires Streptolysin O and NF-ήB Activation but Proceeds Independently of TLR Signaling and P2X7 Receptor. Journal of Immunology, 2009, 183, 5823-5829.	0.4	201
77	Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells. BMC Urology, 2008, 8, 5.	0.6	141
78	Probiotic lactobacilli and VSL#3 induce enterocyte β-defensin 2. Clinical and Experimental Immunology, 2008, 151, 528-535.	1.1	313
79	Mouse Beta-Defensin-14, an Antimicrobial Ortholog of Human Beta-Defensin-3. Antimicrobial Agents and Chemotherapy, 2008, 52, 1876-1879.	1.4	51
80	Antimicrobial peptides: ancient molecules as modern therapeutics?. Expert Review of Dermatology, 2008, 3, 1-5.	0.3	2
81	Cutting Edge: Critical Role for Mesothelial Cells in Necrosis-Induced Inflammation through the Recognition of IL-1α Released from Dying Cells. Journal of Immunology, 2008, 181, 8194-8198.	0.4	210
82	Psoriasin (S100A7) is a principal antimicrobial peptide of the human tongue. Mucosal Immunology, 2008, 1, 239-243.	2.7	43
83	Antimicrobial Peptides as First-Line Effector Molecules of the Human Innate Immune System. Nucleic Acids and Molecular Biology, 2008, , 187-218.	0.2	2
84	Antimicrobial Peptides in Oral Cancer. Current Pharmaceutical Design, 2007, 13, 3119-3130.	0.9	31
85	The Role and Potential Therapeutical Applications of Antimicrobial Proteins in Infectious and Inflammatory Diseases. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2007, 7, 75-82.	0.6	32
86	Antimicrobial peptides: Effector molecules of the cutaneous defense system. International Congress Series, 2007, 1302, 26-35.	0.2	1
87	Review: Human antimicrobial proteins — effectors of innate immunity. Journal of Endotoxin Research, 2007, 13, 317-338.	2.5	87
88	Psoriasin (S100A7) is significantly up-regulated in human epithelial skin tumours. Journal of Cancer Research and Clinical Oncology, 2007, 133, 253-261.	1.2	76
89	Antimicrobial peptides in skin disease. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 93-100.	0.5	10
90	Lipid-Specific Membrane Activity of Human β-Defensin-3. Biochemistry, 2006, 45, 5663-5670.	1.2	37

#	Article	IF	CITATIONS
91	Pseudomonas Aeruginosa- and IL-1β-Mediated Induction of Human β-Defensin-2 in Keratinocytes Is Controlled by NF-κB and AP-1. Journal of Investigative Dermatology, 2006, 126, 121-127.	0.3	76
92	Antitumor Activity of the Antimicrobial Peptide Magainin II against Bladder Cancer Cell Lines. European Urology, 2006, 50, 141-147.	0.9	179
93	Identification of RNase 8 as a Novel Human Antimicrobial Protein. Antimicrobial Agents and Chemotherapy, 2006, 50, 3194-3196.	1.4	50
94	NOD2/CARD15 Mediates Induction of the Antimicrobial Peptide Human Beta-defensin-2. Journal of Biological Chemistry, 2006, 281, 2005-2011.	1.6	288
95	Activity of human β-defensins 2 and 3 against ESBL-producing Klebsiella strains. Journal of Antimicrobial Chemotherapy, 2006, 57, 562-565.	1.3	22
96	Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nature Immunology, 2005, 6, 57-64.	7.0	592
97	Human Î ² -defensin 3 mediates tissue remodeling processes in articular cartilage by increasing levels of metalloproteinases and reducing levels of their endogenous inhibitors. Arthritis and Rheumatism, 2005, 52, 1736-1745.	6.7	68
98	Psoriatic scales: a promising source for the isolation of human skin-derived antimicrobial proteins. Journal of Leukocyte Biology, 2005, 77, 476-486.	1.5	191
99	Oesophageal defensin expression during Candida infection and reflux disease. Scandinavian Journal of Gastroenterology, 2005, 40, 501-507.	0.6	36
100	Antimicrobial Peptides in Human Skin. , 2005, 86, 22-41.		89
101	Differential Gene Induction of Human β-Defensins (hBD-1, -2, -3, and -4) in Keratinocytes Is Inhibited by Retinoic Acid. Journal of Investigative Dermatology, 2004, 123, 522-529.	0.3	188
102	Production of endogenous antibiotics in articular cartilage. Arthritis and Rheumatism, 2004, 50, 3526-3534.	6.7	42
103	NF-κB- and AP-1-Mediated Induction of Human Beta Defensin-2 in Intestinal Epithelial Cells by Escherichia coli Nissle 1917: a Novel Effect of a Probiotic Bacterium. Infection and Immunity, 2004, 72, 5750-5758.	1.0	437
104	Human beta-defensin-2 in oral cancer with opportunistic Candida infection. Anticancer Research, 2004, 24, 1025-30.	0.5	23
105	Burkholderia Is Highly Resistant to Human Beta-Defensin 3. Antimicrobial Agents and Chemotherapy, 2003, 47, 1739-1741.	1.4	67
106	RNase 7, a Novel Innate Immune Defense Antimicrobial Protein of Healthy Human Skin. Journal of Biological Chemistry, 2002, 277, 46779-46784.	1.6	375
107	Expression of human beta-defensins 1 and 2 in kidneys with chronic bacterial infection. BMC Infectious Diseases, 2002, 2, 20.	1.3	83
108	Isolation and Characterization of Human μ-Defensin-3, a Novel Human Inducible Peptide Antibiotic. Journal of Biological Chemistry, 2001, 276, 5707-5713.	1.6	1,168

#	Article	IF	CITATIONS
109	Expression profile of human defensins and antimicrobial proteins in oral tissues. Journal of Oral Pathology and Medicine, 2001, 30, 154-158.	1.4	106
110	Mucoid <i>Pseudomonas aeruginosa</i> , TNF- α , and IL-1 β , but Not IL-6, Induce Human β -Defensin-2 in Respiratory Epithelia. American Journal of Respiratory Cell and Molecular Biology, 2000, 22, 714-721.	1.4	403
111	Human beta-defensin-2. International Journal of Biochemistry and Cell Biology, 1999, 31, 645-651.	1.2	431
112	Antileukoprotease in Human Skin: An Antibiotic Peptide Constitutively Produced by Keratinocytes. Biochemical and Biophysical Research Communications, 1998, 248, 904-909.	1.0	161
113	Mapping of the Gene Encoding Human β-Defensin-2 (DEFB2) to Chromosome Region 8p22–p23.1. Genomics, 1997, 46, 472-475.	1.3	111