
Pedro Garces

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4346999/publications.pdf Version: 2024-02-01

DEDDO CADCES

#	Article	IF	CITATIONS
1	Strain and damage sensing properties on multifunctional cement composites with CNF admixture. Cement and Concrete Composites, 2014, 46, 90-98.	4.6	210
2	Multifunctional Cement Composites Strain and Damage Sensors Applied on Reinforced Concrete (RC) Structural Elements. Materials, 2013, 6, 841-855.	1.3	139
3	Self-heating and deicing conductive cement. Experimental study and modeling. Construction and Building Materials, 2015, 75, 442-449.	3.2	138
4	Spectroelectrochemical study of the oxidation of aminophenols on platinum electrode in acid medium. Journal of Electroanalytical Chemistry, 2004, 565, 375-383.	1.9	137
5	Portland cement systems with addition of sewage sludge ash. Application in concretes for the manufacture of blocks. Journal of Cleaner Production, 2014, 82, 112-124.	4.6	113
6	Mechanical and physical properties of cement blended with sewage sludge ash. Waste Management, 2008, 28, 2495-2502.	3.7	110
7	Mechanical Properties and Durability of CNT Cement Composites. Materials, 2014, 7, 1640-1651.	1.3	103
8	Efficiency of a conductive cement-based anodic system for the application of cathodic protection, cathodic protection, cathodic prevention and electrochemical chloride extraction to control corrosion in reinforced concrete structures. Corrosion Science, 2015, 96, 102-111.	3.0	92
9	Effect of nitrite in corrosion of reinforcing steel in neutral and acid solutions simulating the electrolytic environments of micropores of concrete in the propagation period. Corrosion Science, 2008, 50, 498-509.	3.0	84
10	Effect of carbon fibres on the mechanical properties and corrosion levels of reinforced portland cement mortars. Cement and Concrete Research, 2005, 35, 324-331.	4.6	82
11	Highly Conductive Carbon Fiber Reinforced Concrete for Icing Prevention and Curing. Materials, 2016, 9, 281.	1.3	78
12	Electrochemical extraction of chlorides from reinforced concrete using a conductive cement paste as the anode. Corrosion Science, 2010, 52, 1576-1581.	3.0	71
13	Corrosion of reinforcing steel in neutral and acid solutions simulating the electrolytic environments in the micropores of concrete in the propagation period. Corrosion Science, 2005, 47, 289-306.	3.0	63
14	Self-Sensing Properties of Alkali Activated Blast Furnace Slag (BFS) Composites Reinforced with Carbon Fibers. Materials, 2013, 6, 4776-4786.	1.3	61
15	Influence of pH on the nitrite corrosion inhibition of reinforcing steel in simulated concrete pore solution. Corrosion Science, 2011, 53, 3991-4000.	3.0	59
16	Mechanical properties and corrosion of CAC mortars with carbon fibers. Construction and Building Materials, 2012, 34, 91-96.	3.2	54
17	Feasibility of electrochemical chloride extraction from structural reinforced concrete using a sprayed conductive graphite powder–cement paste as anode. Corrosion Science, 2013, 77, 128-134.	3.0	54
18	Effect of the reinforcement bar arrangement on the efficiency of electrochemical chloride removal technique applied to reinforced concrete structures. Corrosion Science, 2006, 48, 531-545.	3.0	52

Pedro Garces

#	Article	IF	CITATIONS
19	Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst. Materials, 2014, 7, 3176-3197.	1.3	52
20	Performance of cement-based sensors with CNT for strain sensing. Advances in Cement Research, 2016, 28, 274-284.	0.7	51
21	Chloride-induced corrosion of steel embedded in mortars containing fly ash and spent cracking catalyst. Corrosion Science, 2008, 50, 1567-1575.	3.0	50
22	Corrosion of steel reinforcement in structural concrete with carbon material addition. Corrosion Science, 2007, 49, 2557-2566.	3.0	49
23	Blending of industrial waste from different sources as partial substitution of Portland cement in pastes and mortars. Construction and Building Materials, 2014, 66, 645-653.	3.2	45
24	Galvanic currents and corrosion rates of reinforcements measured in cells simulating different pitting areas caused by chloride attack in sodium hydroxide. Corrosion Science, 2008, 50, 2959-2964.	3.0	43
25	The effect of processed fly ashes on the durability and the corrosion of steel rebars embedded in cement–modified fly ash mortars. Cement and Concrete Composites, 2010, 32, 204-210.	4.6	43
26	Corrosion behaviour at the interface of steel bars embedded in cement slurries. Corrosion Science, 2002, 44, 2805-2816.	3.0	37
27	Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression. Nanomaterials, 2017, 7, 413.	1.9	32
28	Efecto de la adición de nanofibras de carbono en las propiedades mecánicas y de durabilidad de materiales cementantes. Materiales De Construccion, 2012, 62, 343-357.	0.2	32
29	Electrochemical study of polypyrrole/ coatings on carbon steel electrodes as protection against corrosion in chloride aqueous solutions. Corrosion Science, 2006, 48, 1122-1136.	3.0	31
30	Improvement of the chloride ingress resistance of OPC mortars by using spent cracking catalyst. Cement and Concrete Research, 2009, 39, 126-139.	4.6	27
31	Heating and de-icing function in conductive concrete and cement paste with the hybrid addition of carbon nanotubes and graphite products. Smart Materials and Structures, 2021, 30, 045010.	1.8	27
32	Accelerated carbonation of cement pastes partially substituted with fluid catalytic cracking catalyst residue (FC3R). Cement and Concrete Composites, 2009, 31, 134-138.	4.6	23
33	The carbonation of OPC mortars partially substituted with spent fluid catalytic catalyst (FC3R) and its influence on their mechanical properties. Construction and Building Materials, 2009, 23, 1323-1328.	3.2	23
34	Temperature and humidity influence on the strain sensing performance of hybrid carbon nanotubes and graphite cement composites. Construction and Building Materials, 2021, 284, 122786.	3.2	22
35	Función de apantallamiento de interferencia electromagnética de pastas de cemento con materiales carbonosos y cenizas volantes procesadas. Materiales De Construccion, 2010, 60, 21-32.	0.2	22
36	Influence of the Oxidation Process of Carbon Material on the Mechanical Properties of Cement Mortars. Journal of Materials in Civil Engineering, 2011, 23, 321-329.	1.3	21

PEDRO GARCES

#	Article	IF	CITATIONS
37	Graphite–Cement Paste: A New Coating of Reinforced Concrete Structural Elements for the Application of Electrochemical Anti-Corrosion Treatments. Coatings, 2016, 6, 32.	1.2	19
38	Carbonation rate and reinforcing steel corrosion rate of OPC/FC3R/FA mortars under accelerated conditions. Advances in Cement Research, 2009, 21, 15-22.	0.7	17
39	Electropolymerization of Phenol on Carbon Steel and Stainless Steel Electrodes in Carbonate Aqueous Medium. Polymer Journal, 2000, 32, 623-628.	1.3	16
40	Shape Effect of Electrochemical Chloride Extraction in Structural Reinforced Concrete Elements Using a New Cement-Based Anodic System. Materials, 2015, 8, 2901-2917.	1.3	16
41	Compatibility of fluid catalytic cracking catalyst residue (FC3R) with various types of cement. Advances in Cement Research, 2007, 19, 117-124.	0.7	15
42	Pozzolanic activity of a spent fluid catalytic cracking catalyst residue. Advances in Cement Research, 2011, 23, 105-111.	0.7	15
43	Viabilidad de utilización de una pasta de cemento con nanofibras de carbono como ánodo en la extracción electroquÃmica de cloruros en hormigón. Materiales De Construccion, 2013, 63, 39-48.	0.2	14
44	Metallic corrosion of steels embedded in calcium aluminate cement mortars. Cement and Concrete Research, 2001, 31, 1263-1269.	4.6	12
45	Characterisation and corrosion studies of steel electrodes covered by polypyrrole/phosphotungstate using Electrochemical Impedance Spectroscopy. Progress in Organic Coatings, 2009, 66, 235-241.	1.9	11
46	General study of alkaline hydrolysis in calcium aluminate cement mortars under a broad range of experimental conditions. Cement and Concrete Research, 2000, 30, 1689-1699.	4.6	9
47	Electrochemical and chemical characterization of polypyrrole/phosphotungstate coatings electrosynthesized on carbon steel electrodes in acetonitrile medium. Synthetic Metals, 2009, 159, 1723-1730.	2.1	8
48	Self-heating function of carbon nanofiber cement pastes. Materiales De Construccion, 2014, 64, e015.	0.2	8
49	Ice-Prevention and De-Icing Capacity of Epoxy Resin Filled with Hybrid Carbon-Nanostructured Forms: Self-Heating by Joule Effect. Nanomaterials, 2021, 11, 2427.	1.9	7
50	Composition of Corroded Reinforcing Steel Surface in Solutions Simulating the Electrolytic Environments in the Micropores of Concrete in the Propagation Period. Materials, 2022, 15, 2216.	1.3	4
51	Concrete for Precast Blocks: Binary and Ternary Combination of Sewage Sludge Ash with Diverse Mineral Residue. Materials, 2020, 13, 4634.	1.3	3
52	Durability and Mechanical Properties of CNT Cement Composites. RILEM Bookseries, 2019, , 31-41.	0.2	2
53	Application of combined electrochemical treatments to reinforced concrete: Electrochemical chloride extraction plus cathodic protection. Hormigon Y Acero, 2018, , .	0.1	0