Eduarda M Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4346434/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How do abiotic environmental conditions influence shrimp susceptibility to disease? A critical analysis focussed on White Spot Disease. Journal of Invertebrate Pathology, 2021, 186, 107369.	1.5	41
2	Optimizing hatchery practices for genetic improvement of marine bivalves. Reviews in Aquaculture, 2021, 13, 2289-2304.	4.6	28
3	Sustainable aquaculture through the One Health lens. Nature Food, 2020, 1, 468-474.	6.2	100
4	Hypoxia modifies the response to flutamide and linuron in male three-spined stickleback (Gasterosteus) Tj ETQq0	0 0 0 rgBT	/Oyerlock 10
5	Harnessing genomics to fast-track genetic improvement in aquaculture. Nature Reviews Genetics, 2020, 21, 389-409.	7.7	286
6	Developmental exposure window influences silver toxicity but does not affect the susceptibility to subsequent exposures in zebrafish embryos. Histochemistry and Cell Biology, 2020, 154, 579-595.	0.8	2
7	Clozapine-induced transcriptional changes in the zebrafish brain. NPJ Schizophrenia, 2020, 6, 3.	2.0	14
8	Sublethal exposure to copper supresses the ability to acclimate to hypoxia in a model fish species. Aquatic Toxicology, 2019, 217, 105325.	1.9	14
9	Sex-specific transcription and DNA methylation profiles of reproductive and epigenetic associated genes in the gonads and livers of breeding zebrafish. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2018, 222, 16-25.	0.8	24
10	Fishes in a changing world: learning from the past to promote sustainability of fish populations. Journal of Fish Biology, 2018, 92, 804-827.	0.7	51
11	Near-future CO2 levels impair the olfactory system of a marine fish. Nature Climate Change, 2018, 8, 737-743.	8.1	97
12	Contrasting effects of hypoxia on copper toxicity during development in the three-spined stickleback (Gasterosteus aculeatus). Environmental Pollution, 2017, 222, 433-443.	3.7	17
13	Hepatic transcriptional responses to copper in the three-spined stickleback are affected by their pollution exposure history. Aquatic Toxicology, 2017, 184, 26-36.	1.9	12
14	Advances in the application of high-throughput sequencing in invertebrate virology. Journal of Invertebrate Pathology, 2017, 147, 145-156.	1.5	12
15	Molecular Mechanisms of White Spot Syndrome Virus Infection and Perspectives on Treatments. Viruses, 2016, 8, 23.	1.5	162
16	Hypoxia Suppressed Copper Toxicity during Early Development in Zebrafish Embryos in a Process Mediated by the Activation of the HIF Signaling Pathway. Environmental Science & Technology, 2016, 50, 4502-4512.	4.6	31
17	Bisphenol A causes reproductive toxicity, decreases <i>dnmt1</i> transcription, and reduces global DNA methylation in breeding zebrafish <i>(Danio rerio)</i> . Epigenetics, 2016, 11, 526-538.	1.3	149
18	Identification of conserved hepatic transcriptomic responses to 17β-estradiol using high-throughput sequencing in brown trout. Physiological Genomics, 2015, 47, 420-431.	1.0	14

#	Article	IF	CITATIONS
19	The Herbicide Linuron Inhibits Cholesterol Biosynthesis and Induces Cellular Stress Responses in Brown Trout. Environmental Science & Technology, 2015, 49, 3110-3118.	4.6	29
20	Global transcriptomic profiling demonstrates induction of oxidative stress and of compensatory cellular stress responses in brown trout exposed to glyphosate and Roundup. BMC Genomics, 2015, 16, 32.	1.2	90
21	De novo assembly of the Carcinus maenas transcriptome and characterization of innate immune system pathways. BMC Genomics, 2015, 16, 458.	1.2	48
22	Effects of Glyphosate and its Formulation, Roundup, on Reproduction in Zebrafish (<i>Danio) Tj ETQq0 0 0 rgE</i>	ST /Overlock 4.6	2 10 Tf 50 622 183
23	Population bottlenecks, genetic diversity and breeding ability of the three-spined stickleback (Gasterosteus aculeatus) from three polluted English Rivers. Aquatic Toxicology, 2013, 142-143, 264-271.	1.9	5
24	Toxicogenomic Responses of Zebrafish Embryos/Larvae to Tris(1,3-dichloro-2-propyl) Phosphate (TDCPP) Reveal Possible Molecular Mechanisms of Developmental Toxicity. Environmental Science & Technology, 2013, 47, 10574-10582.	4.6	102
25	Molecular Mechanisms of Toxicity of Silver Nanoparticles in Zebrafish Embryos. Environmental Science & Technology, 2013, 47, 8005-8014.	4.6	198
26	Global Transcriptome Profiling Reveals Molecular Mechanisms of Metal Tolerance in a Chronically Exposed Wild Population of Brown Trout. Environmental Science & Technology, 2013, 47, 8869-8877.	4.6	74
27	The influence of 17β-estradiol on intestinal calcium carbonate precipitation and osmoregulation in seawater-acclimated rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology, 2011, 214, 2791-2798.	0.8	15
28	Effects of Aqueous Exposure to Silver Nanoparticles of Different Sizes in Rainbow Trout. Toxicological Sciences, 2010, 115, 521-534.	1.4	299
29	Identifying Health Impacts of Exposure to Copper Using Transcriptomics and Metabolomics in a Fish Model. Environmental Science & Technology, 2010, 44, 820-826.	4.6	152
30	Hepatic transcriptomic and metabolomic responses in the Stickleback (Gasterosteus aculeatus) exposed to ethinyl-estradiol. Aquatic Toxicology, 2010, 97, 174-187.	1.9	71
31	Mechanisms of toxicity of di(2-ethylhexyl) phthalate on the reproductive health of male zebrafish. Aquatic Toxicology, 2010, 99, 360-369.	1.9	118
32	Hepatic Transcriptomic and Metabolomic Responses in the Stickleback (<i>Gasterosteus aculeatus</i>) Exposed to Environmentally Relevant Concentrations of Dibenzanthracene. Environmental Science & Technology, 2009, 43, 6341-6348.	4.6	71
33	A critical analysis of the biological impacts of plasticizers on wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2047-2062.	1.8	646
34	Sexually dimorphic gene expression in the brains of mature zebrafish. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2008, 149, 314-324.	0.8	56
35	Fish toxicogenomics. Advances in Experimental Biology, 2008, 2, 75-325.	0.1	9
36	Variability in measures of reproductive success in laboratory-kept colonies of zebrafish and implications for studies addressing population-level effects of environmental chemicals. Aquatic Toxicology, 2008, 87, 115-126.	1.9	69

Eduarda M Santos

#	Article	IF	CITATIONS
37	Molecular basis of sex and reproductive status in breeding zebrafish. Physiological Genomics, 2007, 30, 111-122.	1.0	71
38	Gonadal transcriptome responses and physiological consequences of exposure to oestrogen in breeding zebrafish (Danio rerio). Aquatic Toxicology, 2007, 83, 134-142.	1.9	89
39	Gene Expression Profiling for Understanding Chemical Causation of Biological Effects for Complex Mixtures: A Case Study on Estrogens. Environmental Science & Technology, 2007, 41, 8187-8194.	4.6	42
40	Predicted Exposures to Steroid Estrogens in U.K. Rivers Correlate with Widespread Sexual Disruption in Wild Fish Populations. Environmental Health Perspectives, 2006, 114, 32-39.	2.8	470
41	Accounting for Differences in Estrogenic Responses in Rainbow Trout (Oncorhynchus mykiss:Â) Tj ETQq1 1 0.7843 Works. Environmental Science & Technology, 2005, 39, 2599-2607.	314 rgBT / 4.6	Overlock 96
42	ELISAs for detecting vitellogenin in the fathead minnow (Pimephales promelas)—a critical analysis. Response to Mylchreest et al., Comp Biochem Physiol C 134: 251–257, 2003. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2004, 138, 531-532.	1.3	4
43	Conadotropins, their receptors, and the regulation of testicular functions in fish. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2001, 129, 407-417.	0.7	127
44	Nonylphenol Affects Gonadotropin Levels in the Pituitary Gland and Plasma of Female Rainbow Trout. Environmental Science & Technology, 2001, 35, 2909-2916.	4.6	110
45	Follicle-Stimulating Hormone and Its α and β Subunits in Rainbow Trout (Oncorhynchus mykiss): Purification, Characterization, Development of Specific Radioimmunoassays, and Their Seasonal Plasma and Pituitary Concentrations in Females1, Biology of Reproduction, 2001, 65, 288-294.	1.2	46