List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4346122/publications.pdf Version: 2024-02-01

	19657	20961
14,915	61	115
citations	h-index	g-index
193	193	11403
docs citations	times ranked	citing authors
	14,915 citations 193 docs citations	14,91561citationsh-index193193docs citations193times ranked

Μαργιανία

#	Article	IF	CITATIONS
1	Particle release from refit operations in shipyards: Exposure, toxicity and environmental implications. Science of the Total Environment, 2022, 804, 150216.	8.0	6
2	Organic and Elemental Carbon in the Urban Background in an Eastern Mediterranean City. Atmosphere, 2022, 13, 197.	2.3	8
3	Exposure of e-waste dismantlers from a formal recycling facility in Spain to inhalable organophosphate and halogenated flame retardants. Chemosphere, 2022, 294, 133775.	8.2	10
4	Air Quality Sensors Systems as Tools to Support Guidance in Athletics Stadia for Elite and Recreational Athletes. International Journal of Environmental Research and Public Health, 2022, 19, 3561.	2.6	5
5	E-waste dismantling as a source of personal exposure and environmental release of fine and ultrafine particles. Science of the Total Environment, 2022, 833, 154871.	8.0	13
6	Vehicular Traffic in Urban Areas: Health Burden and Influence of Sustainable Urban Planning and Mobility. Atmosphere, 2022, 13, 598.	2.3	11
7	Unveiling the Toxicity of Fine and Nano-Sized Airborne Particles Generated from Industrial Thermal Spraying Processes in Human Alveolar Epithelial Cells. International Journal of Molecular Sciences, 2022, 23, 4278.	4.1	2
8	Non-linear models for black carbon exposure modelling using air pollution datasets. Environmental Research, 2022, 212, 113269.	7.5	6
9	Toxicity assessment of industrial engineered and airborne process-generated nanoparticles in a 3D human airway epithelial <i>inÂvitro</i> model. Nanotoxicology, 2021, 15, 542-557.	3.0	16
10	Contribution of Aerosol Sources to Health Impacts. Atmosphere, 2021, 12, 730.	2.3	8
11	H2020 project CAPTOR dataset: Raw data collected by low-cost MOX ozone sensors in a real air pollution monitoring network. Data in Brief, 2021, 36, 107127.	1.0	9
12	Characterizing the Chemical Profile of Incidental Ultrafine Particles for Toxicity Assessment Using an Aerosol Concentrator. Annals of Work Exposures and Health, 2021, 65, 966-978.	1.4	5
13	Evaluation of One- and Two-Box Models as Particle Exposure Prediction Tools at Industrial Scale. Toxics, 2021, 9, 201.	3.7	4
14	Indoor air quality evaluation in oncology units at two European hospitals: Low-cost sensors for TVOCs, PM2.5 and CO2 real-time monitoring. Building and Environment, 2021, 205, 108237.	6.9	30
15	In Vitro Toxicity of Industrially Relevant Engineered Nanoparticles in Human Alveolar Epithelial Cells: Air–Liquid Interface versus Submerged Cultures. Nanomaterials, 2021, 11, 3225.	4.1	8
16	Air quality mitigation in European cities: Status and challenges ahead. Environment International, 2020, 143, 105907.	10.0	17
17	Evaluation of the Semi-Continuous OCEC analyzer performance with the EUSAAR2 protocol. Science of the Total Environment, 2020, 747, 141266.	8.0	22
18	Particle size distributions and hygroscopic restructuring of ultrafine particles emitted during thermal spraying. Aerosol Science and Technology, 2020, 54, 1359-1372.	3.1	6

#	Article	IF	CITATIONS
19	Estimated health impacts from maritime transport in the Mediterranean region and benefits from the use of cleaner fuels. Environment International, 2020, 138, 105670.	10.0	57
20	Relationship between indoor and outdoor size-fractionated particulate matter in urban microenvironments: Levels, chemical composition and sources. Environmental Research, 2020, 183, 109203.	7.5	53
21	Athletes' exposure to air pollution during World Athletics Relays: A pilot study. Science of the Total Environment, 2020, 717, 137161.	8.0	36
22	Nanoparticle exposure and hazard in the ceramic industry: an overview of potential sources, toxicity and health effects. Environmental Research, 2020, 184, 109297.	7.5	32
23	Multisensor Data Fusion Calibration in IoT Air Pollution Platforms. IEEE Internet of Things Journal, 2020, 7, 3124-3132.	8.7	62
24	Particulate Matter Concentrations in a Middle Eastern City – An Insight to Sand and Dust Storm Episodes. Aerosol and Air Quality Research, 2020, 20, 2780-2792.	2.1	8
25	A Comparative Study of Calibration Methods for Low-Cost Ozone Sensors in IoT Platforms. IEEE Internet of Things Journal, 2019, 6, 9563-9571.	8.7	30
26	Effectiveness of nanoparticle exposure mitigation measures in industrial settings. International Journal of Hygiene and Environmental Health, 2019, 222, 926-935.	4.3	7
27	Modeling of High Nanoparticle Exposure in an Indoor Industrial Scenario with a One-Box Model. International Journal of Environmental Research and Public Health, 2019, 16, 1695.	2.6	11
28	Distributed Multi-Scale Calibration of Low-Cost Ozone Sensors in Wireless Sensor Networks. Sensors, 2019, 19, 2503.	3.8	21
29	Vertical and horizontal fall-off of black carbon and NO2 within urban blocks. Science of the Total Environment, 2019, 686, 236-245.	8.0	18
30	Source specific exposure and risk assessment for indoor aerosols. Science of the Total Environment, 2019, 668, 13-24.	8.0	49
31	Health risk assessment from exposure to particles during packing in working environments. Science of the Total Environment, 2019, 671, 474-487.	8.0	22
32	Workplace Exposure to Nanoparticles during Thermal Spraying of Ceramic Coatings. Annals of Work Exposures and Health, 2019, 63, 91-106.	1.4	19
33	On the Relationship between Exposure to Particles and Dustiness during Handling of Powders in Industrial Settings. Annals of Work Exposures and Health, 2019, 63, 107-123.	1.4	14
34	Testing the performance of one and two box models as tools for risk assessment of particle exposure during packing of inorganic fertilizer. Science of the Total Environment, 2019, 650, 2423-2436.	8.0	12
35	Quantification of Carbonaceous Aerosol Emissions from Cookstoves in Senegal. Aerosol and Air Quality Research, 2019, 19, 80-91.	2.1	10
36	Particle-phase concentrations and sources of legacy and novel flame retardants in outdoor and indoor environments across Spain. Science of the Total Environment, 2019, 649, 1541-1552.	8.0	24

#	Article	IF	CITATIONS
37	Testing the performance of sensors for ozone pollution monitoring in a citizen science approach. Science of the Total Environment, 2019, 651, 1166-1179.	8.0	53
38	Indoor air pollution from biomass cookstoves in rural Senegal. Energy for Sustainable Development, 2018, 43, 224-234.	4.5	63
39	Particle-related exposure, dose and lung cancer risk of primary school children in two European countries. Science of the Total Environment, 2018, 616-617, 720-729.	8.0	47
40	Carbonaceous Aerosols in the Atmosphere. Atmosphere, 2018, 9, 181.	2.3	55
41	Nanoparticle formation and emission during laser ablation of ceramic tiles. Journal of Aerosol Science, 2018, 126, 152-168.	3.8	15
42	Investigations into factors affecting personal exposure to particles in urban microenvironments using low-cost sensors. Environment International, 2018, 120, 496-504.	10.0	40
43	Assessment of air quality microsensors versus reference methods: The EuNetAir Joint Exercise – Part II. Atmospheric Environment, 2018, 193, 127-142.	4.1	72
44	Identification of technical problems affecting performance of DustTrak DRX aerosol monitors. Science of the Total Environment, 2017, 584-585, 849-855.	8.0	50
45	Intercomparison of methods to estimate black carbon emissions from cookstoves. Science of the Total Environment, 2017, 595, 886-893.	8.0	17
46	Workplace exposure and release of ultrafine particles during atmospheric plasma spraying in the ceramic industry. Science of the Total Environment, 2017, 599-600, 2065-2073.	8.0	33
47	Phenomenology of high-ozone episodes in NE Spain. Atmospheric Chemistry and Physics, 2017, 17, 2817-2838.	4.9	45
48	Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings. Science of the Total Environment, 2016, 560-561, 150-159.	8.0	111
49	Intercomparison of a portable and two stationary mobility particle sizers for nanoscale aerosol measurements. Aerosol Science and Technology, 2016, 50, 653-668.	3.1	29
50	Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise. Atmospheric Environment, 2016, 147, 246-263.	4.1	182
51	Children's well-being at schools: Impact of climatic conditions and air pollution. Environment International, 2016, 94, 196-210.	10.0	128
52	Variability in exposure to ambient ultrafine particles in urban schools: Comparative assessment between Australia and Spain. Environment International, 2016, 88, 142-149.	10.0	36
53	Process-generated nanoparticles from ceramic tile sintering: Emissions, exposure and environmental release. Science of the Total Environment, 2016, 565, 922-932.	8.0	35
54	Spatiotemporally resolved black carbon concentration, schoolchildren's exposure and dose in <scp>B</scp> arcelona. Indoor Air, 2016, 26, 391-402.	4.3	69

#	Article	IF	CITATIONS
55	Black Carbon Exposure of Schoolchildren in Barcelona. Springer Proceedings in Complexity, 2016, , 173-175.	0.3	0
56	Chapter 10 New Considerations for PM, Black Carbon, and Particle Number Concentration for Air Quality Monitoring Across Different European Cities. , 2016, , 177-218.		0
57	Characterization of Exposure to Carbon Nanotubes in an Industrial Setting. Annals of Occupational Hygiene, 2015, 59, 586-99.	1.9	16
58	Workplace Exposure to Process-Generated Ultrafine and Nanoparticles in Ceramic Processes Using Laser Technology. Handbook of Environmental Chemistry, 2015, , 159-179.	0.4	3
59	Field comparison of portable and stationary instruments for outdoor urban air exposure assessments. Atmospheric Environment, 2015, 123, 220-228.	4.1	62
60	Urban NH3 levels and sources in six major Spanish cities. Chemosphere, 2015, 119, 769-777.	8.2	53
61	Outdoor infiltration and indoor contribution of UFP and BC, OC, secondary inorganic ions and metals in PM2.5 in schools. Atmospheric Environment, 2015, 106, 129-138.	4.1	100
62	Determinants of aerosol lung-deposited surface area variation in an urban environment. Science of the Total Environment, 2015, 517, 38-47.	8.0	44
63	ECOC comparison exercise with identical thermal protocols after temperature offset correction – instrument diagnostics by in-depth evaluation of operational parameters. Atmospheric Measurement Techniques, 2015, 8, 779-792.	3.1	87
64	Comprehensive monitoring of the occurrence of 22 drugs of abuse and transformation products in airborne particulate matter in the city of Barcelona. Science of the Total Environment, 2015, 532, 344-352.	8.0	19
65	Association between Traffic-Related Air Pollution in Schools and Cognitive Development in Primary School Children: A Prospective Cohort Study. PLoS Medicine, 2015, 12, e1001792.	8.4	399
66	Environmental and Health Benefits from Designating the Marmara Sea and the Turkish Straits as an Emission Control Area (ECA). Environmental Science & Technology, 2015, 49, 3304-3313.	10.0	61
67	Partitioning of trace elements and metals between quasi-ultrafine, accumulation and coarse aerosols in indoor and outdoor air in schools. Atmospheric Environment, 2015, 106, 392-401.	4.1	34
68	Industrial sources of primary and secondary organic aerosols in two urban environments in Spain. Environmental Science and Pollution Research, 2015, 22, 10413-10424.	5.3	19
69	Multicriteria approach to interpret the variability of the levels of particulate matter and gaseous pollutants in the Madrid metropolitan area, during the 1999–2012 period. Atmospheric Environment, 2015, 109, 205-216.	4.1	26
70	Ultrafine and nanoparticle formation and emission mechanisms during laser processing of ceramic materials. Journal of Aerosol Science, 2015, 88, 48-57.	3.8	34
71	Real-time indoor and outdoor measurements of black carbon at primary schools. Atmospheric Environment, 2015, 120, 417-426.	4.1	26
72	Outdoor and indoor UFP in primary schools across Barcelona. Science of the Total Environment, 2014, 493, 943-953.	8.0	53

#	Article	IF	CITATIONS
73	Variations in school playground and classroom atmospheric particulate chemistry. Atmospheric Environment, 2014, 91, 162-171.	4.1	28
74	Natural sources of atmospheric aerosols influencing air quality across Europe. Science of the Total Environment, 2014, 472, 825-833.	8.0	68
75	New Directions: The future of European urban air quality monitoring. Atmospheric Environment, 2014, 87, 258-260.	4.1	19
76	Impact of maritime transport emissions on coastal air quality in Europe. Atmospheric Environment, 2014, 90, 96-105.	4.1	435
77	Sources of indoor and outdoor PM2.5 concentrations in primary schools. Science of the Total Environment, 2014, 490, 757-765.	8.0	153
78	Assessment of personal exposure to particulate air pollution during commuting in European cities—Recommendations and policy implications. Science of the Total Environment, 2014, 490, 785-797.	8.0	145
79	2001–2012 trends on air quality in Spain. Science of the Total Environment, 2014, 490, 957-969.	8.0	123
80	Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain. Environment International, 2014, 69, 200-212.	10.0	243
81	Indoor/outdoor relationships and mass closure of quasi-ultrafine, accumulation and coarse particles in Barcelona schools. Atmospheric Chemistry and Physics, 2014, 14, 4459-4472.	4.9	59
82	Origin of PM10 Pollution Episodes in an Industrialized Mega-City in Central China. Aerosol and Air Quality Research, 2014, 14, 338-346.	2.1	7
83	African dust contribution to ambient aerosol levels across central Spain: Characterization of long-range transport episodes of desert dust. Atmospheric Research, 2013, 127, 117-129.	4.1	65
84	Evidence of biomass burning aerosols in the Barcelona urban environment during winter time. Atmospheric Environment, 2013, 72, 81-88.	4.1	76
85	Particulate Matter: Environmental Monitoring and Mitigation. , 2013, , .		1
86	Air Pollution Monitoring Strategies and Technologies for Urban Areas. Handbook of Environmental Chemistry, 2013, , 277-296.	0.4	3
87	Corrigendum to "Variability of levels and composition of PM ₁₀ and PM _{2.5} in the Barcelona metro system" published in Atmos. Chem. Phys., 12, 5055–5076, 2012. Atmospheric Chemistry and Physics. 2013. 13. 10767-10768.	4.9	1
88	Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy. Atmospheric Chemistry and Physics, 2013, 13, 6185-6206.	4.9	104
89	Presenting SAPUSS: Solving Aerosol Problem by Using Synergistic Strategies in Barcelona, Spain. Atmospheric Chemistry and Physics, 2013, 13, 8991-9019.	4.9	27
90	Weak Pressure Gradient over the Iberian Peninsula and African Dust Outbreaks: A New Dust Long-Transport Scenario. Bulletin of the American Meteorological Society, 2012, 93, 1125-1132.	3.3	17

#	Article	IF	CITATIONS
91	Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations. Atmospheric Measurement Techniques, 2012, 5, 1869-1887.	3.1	197
92	Variability of levels and composition of PM ₁₀ and PM _{2.5} in the Barcelona metro system. Atmospheric Chemistry and Physics, 2012, 12, 5055-5076.	4.9	173
93	Size-Resolved Particle Number Emission Patterns under Real-World Driving Conditions Using Positive Matrix Factorization. Environmental Science & Technology, 2012, 46, 11187-11194.	10.0	12
94	A multidisciplinary approach to characterise exposure risk and toxicological effects of PM10 and PM2.5 samples in urban environments. Ecotoxicology and Environmental Safety, 2012, 78, 327-335.	6.0	75
95	Health effects from Sahara dust episodes in Europe: Literature review and research gaps. Environment International, 2012, 47, 107-114.	10.0	194
96	Psychoactive Substances in Airborne Particles in the Urban Environment. Handbook of Environmental Chemistry, 2012, , 435-460.	0.4	2
97	Urban NH3 levels and sources in a Mediterranean environment. Atmospheric Environment, 2012, 57, 153-164.	4.1	115
98	Evaluation of the changes in the Madrid metropolitan area influencing air quality: Analysis of 1999–2008 temporal trend of particulate matter. Atmospheric Environment, 2012, 57, 175-185.	4.1	42
99	Biomass burning contributions to urban aerosols in a coastal Mediterranean City. Science of the Total Environment, 2012, 427-428, 175-190.	8.0	130
100	Spatial and temporal variations in PM10 and PM2.5 across Madrid metropolitan area in 1999–2008. Procedia Environmental Sciences, 2011, 4, 198-208.	1.4	18
101	New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities. Atmospheric Chemistry and Physics, 2011, 11, 6207-6227.	4.9	317
102	Size and time-resolved roadside enrichment of atmospheric particulate pollutants. Atmospheric Chemistry and Physics, 2011, 11, 2917-2931.	4.9	104
103	Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer. Atmospheric Chemistry and Physics, 2011, 11, 6663-6685.	4.9	218
104	Workplace exposure to traffic-derived nanoscaled particulates. Journal of Physics: Conference Series, 2011, 304, 012006.	0.4	2
105	Cocaine and other illicit drugs in airborne particulates in urban environments: A reflection of social conduct and population size. Environmental Pollution, 2011, 159, 1241-1247.	7.5	33
106	Peculiarities in atmospheric particle number and size-resolved speciation in an urban area in the western Mediterranean: Results from the DAURE campaign. Atmospheric Environment, 2011, 45, 5282-5293.	4.1	42
107	Indoor and outdoor sources and infiltration processes of PM1 and black carbon in an urban environment. Atmospheric Environment, 2011, 45, 6359-6367.	4.1	38
108	Manganese in the urban atmosphere: identifying anomalous concentrations and sources. Environmental Science and Pollution Research, 2011, 18, 173-183.	5.3	40

#	Article	IF	CITATIONS
109	Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops. Atmospheric Measurement Techniques, 2011, 4, 245-268.	3.1	284
110	On the quantification of atmospheric carbonate carbon by thermal/optical analysis protocols. Atmospheric Measurement Techniques, 2011, 4, 2409-2419.	3.1	69
111	Ultrafine particle formation in the inland sea breeze airflow in Southwest Europe. Atmospheric Chemistry and Physics, 2010, 10, 9615-9630.	4.9	51
112	A European aerosol phenomenology – 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmospheric Environment, 2010, 44, 1308-1320.	4.1	654
113	Variability of Particle Number, Black Carbon, and PM ₁₀ , PM _{2.5} , and PM ₁ Levels and Speciation: Influence of Road Traffic Emissions on Urban Air Quality. Aerosol Science and Technology, 2010, 44, 487-499.	3.1	207
114	Assessing the Performance of Methods to Detect and Quantify African Dust in Airborne Particulates. Environmental Science & Technology, 2010, 44, 8814-8820.	10.0	34
115	Drugs of abuse in airborne particulates in urban environments. Environment International, 2010, 36, 527-534.	10.0	39
116	Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. Atmospheric Measurement Techniques, 2010, 3, 79-89.	3.1	735
117	Fine Particle Receptor Modeling in the Atmosphere of Mexico City. Journal of the Air and Waste Management Association, 2009, 59, 1417-1428.	1.9	13
118	Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmospheric Environment, 2009, 43, 1650-1659.	4.1	387
119	Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies. Atmospheric Environment, 2009, 43, 3989-3997.	4.1	125
120	Quality considerations of European PM emission inventories. Atmospheric Environment, 2009, 43, 3819-3828.	4.1	24
121	Controls on hourly variations in urban background air pollutant concentrations. Atmospheric Environment, 2009, 43, 4178-4186.	4.1	24
122	Oxidative properties of ambient PM2.5 and elemental composition: Heterogeneous associations in 19 European cities. Atmospheric Environment, 2009, 43, 4595-4602.	4.1	50
123	African dust contributions to mean ambient PM10 mass-levels across the Mediterranean Basin. Atmospheric Environment, 2009, 43, 4266-4277.	4.1	375
124	Determination of direct and fugitive PM emissions in a Mediterranean harbour by means of classic and novel tracer methods. Journal of Environmental Management, 2009, 91, 133-141.	7.8	20
125	Chemical Tracers of Particulate Emissions from Commercial Shipping. Environmental Science & Technology, 2009, 43, 7472-7477.	10.0	227
126	Geochemistry of regional background aerosols in the Western Mediterranean. Atmospheric Research, 2009, 94, 422-435.	4.1	92

#	Article	IF	CITATIONS
127	Quantifying the Impact of Residential Heating on the Urban Air Quality in a Typical European Coal Combustion Region. Environmental Science & Technology, 2009, 43, 7964-7970.	10.0	90
128	Profiling transient daytime peaks in urban air pollutants: city centre traffic hotspot versus urban background concentrations. Journal of Environmental Monitoring, 2009, 11, 1535.	2.1	23
129	Determination of Drugs of Abuse in Airborne Particles by Pressurized Liquid Extraction and Liquid Chromatography-Electrospray-Tandem Mass Spectrometry. Analytical Chemistry, 2009, 81, 4382-4388.	6.5	65
130	Natural and Anthropogenic Contributions to PM10 and PM2.5 in an Urban Area in the Western Mediterranean Coast. Water, Air, and Soil Pollution, 2008, 192, 227-238.	2.4	56
131	Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999–2005. Atmospheric Environment, 2008, 42, 3964-3979.	4.1	287
132	Characterising exposure to PM aerosols for an epidemiological study. Atmospheric Environment, 2008, 42, 1552-1568.	4.1	62
133	Tracers and impact of open burning of rice straw residues on PM in Eastern Spain. Atmospheric Environment, 2008, 42, 1941-1957.	4.1	98
134	Partitioning of major and trace components in PM10–PM2.5–PM1 at an urban site in Southern Europe. Atmospheric Environment, 2008, 42, 1677-1691.	4.1	243
135	Inter-comparison of receptor models for PM source apportionment: Case study in an industrial area. Atmospheric Environment, 2008, 42, 3820-3832.	4.1	134
136	Receptor models application to multi-year ambient PM10 measurements in an industrialized ceramic area: Comparison of source apportionment results. Atmospheric Environment, 2008, 42, 9007-9017.	4.1	34
137	New Directions: Legislative considerations for controlling exposure to atmospheric aerosols in rural areas. Atmospheric Environment, 2008, 42, 8979-8984.	4.1	5
138	Interpretation of the variability of levels of regional background aerosols in the Western Mediterranean. Science of the Total Environment, 2008, 407, 527-540.	8.0	134
139	Chapter Fiveteen Identification, Resolution and Apportionment of Contamination Sources. Developments in Integrated Environmental Assessment, 2008, , 269-284.	0.0	6
140	Source apportionment of particulate matter in Europe: A review of methods and results. Journal of Aerosol Science, 2008, 39, 827-849.	3.8	812
141	Coarse Particles From Saharan Dust and Daily Mortality. Epidemiology, 2008, 19, 800-807.	2.7	301
142	PM speciation and sources in Mexico during the MILAGRO-2006 Campaign. Atmospheric Chemistry and Physics, 2008, 8, 111-128.	4.9	215
143	Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmospheric Environment, 2007, 41, 7219-7231.	4.1	396
144	Comparative chemical mass closure of fine and coarse aerosols at two sites in south and west Europe: Implications for EU air pollution policies. Atmospheric Environment, 2007, 41, 315-326.	4.1	77

#	Article	IF	CITATIONS
145	Source apportionment of ambient PM2.5 at five spanish centres of the european community respiratory health survey (ECRHS II). Atmospheric Environment, 2007, 41, 1395-1406.	4.1	62
146	Contribution of harbour activities to levels of particulate matter in a harbour area: Hada Project-Tarragona Spain. Atmospheric Environment, 2007, 41, 6366-6378.	4.1	51
147	Comparative analysis of organic and elemental carbon concentrations in carbonaceous aerosols in three European cities. Atmospheric Environment, 2007, 41, 5972-5983.	4.1	128
148	Impact of the Saharan dust outbreaks on the ambient levels of total suspended particles (TSP) in the marine boundary layer (MBL) of the Subtropical Eastern North Atlantic Ocean. Atmospheric Environment, 2007, 41, 9468-9480.	4.1	47
149	Speciation and sources of atmospheric aerosols in a highly industrialised emerging mega-city in Central China. Journal of Environmental Monitoring, 2006, 8, 1049-1059.	2.1	67
150	Identification and Chemical Characterization of Industrial Particulate Matter Sources in Southwest Spain. Journal of the Air and Waste Management Association, 2006, 56, 993-1006.	1.9	76
151	Chemical characterisation of PM episodes in NE Spain. Chemosphere, 2006, 62, 947-956.	8.2	50
152	Identification of PM sources by principal component analysis (PCA) coupled with wind direction data. Chemosphere, 2006, 65, 2411-2418.	8.2	112
153	Geochemical and statistical analysis of trace metals in atmospheric particulates in Wuhan, central China. Environmental Geology, 2006, 51, 121-132.	1.2	40
154	Organic and elemental carbon concentrations in carbonaceous aerosols during summer and winter sampling campaigns in Barcelona, Spain. Atmospheric Environment, 2006, 40, 2180-2193.	4.1	102
155	Variations in atmospheric PM trace metal content in Spanish towns: Illustrating the chemical complexity of the inorganic urban aerosol cocktail. Atmospheric Environment, 2006, 40, 6791-6803.	4.1	126
156	Influence of Sampling Artefacts on Measured PM, OC, and EC Levels in Carbonaceous Aerosols in an Urban Area. Aerosol Science and Technology, 2006, 40, 107-117.	3.1	76
157	Spatial and temporal variability of PM levels and composition in a complex summer atmospheric scenario in Barcelona (NE Spain). Atmospheric Environment, 2005, 39, 5343-5361.	4.1	66
158	Exotic dust incursions into central Spain: Implications for legislative controls on atmospheric particulates. Atmospheric Environment, 2005, 39, 6109-6120.	4.1	41
159	Wet and dry African dust episodes over eastern Spain. Journal of Geophysical Research, 2005, 110, .	3.3	210
160	Levels of particulate matter in rural, urban and industrial sites in Spain. Science of the Total Environment, 2004, 334-335, 359-376.	8.0	159
161	Comparative PM10–PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Science of the Total Environment, 2004, 328, 95-113.	8.0	216
162	Speciation and origin of PM10 and PM2.5 in Spain. Journal of Aerosol Science, 2004, 35, 1151-1172.	3.8	246

#	Article	IF	CITATIONS
163	PM levels in the Basque Country (Northern Spain): analysis of a 5-year data record and interpretation of seasonal variations. Atmospheric Environment, 2003, 37, 2879-2891.	4.1	68
164	Events Affecting Levels and Seasonal Evolution of Airborne Particulate Matter Concentrations in the Western Mediterranean. Environmental Science & amp; Technology, 2003, 37, 216-222.	10.0	88
165	Influence of African dust on the levels of atmospheric particulates in the Canary Islands air quality network. Atmospheric Environment, 2002, 36, 5861-5875.	4.1	180
166	Comparison of two kinetic approaches for copper speciation using ion-exchange columns and ion-exchange modified carbon paste electrodes. Analytica Chimica Acta, 1999, 382, 179-188.	5.4	15