Shenlong Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4345999/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy, 2016, 1, .	19.8	1,979
2	Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nature Communications, 2015, 6, 6430.	5.8	848
3	Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nature Energy, 2020, 5, 881-890.	19.8	647
4	Carbonized Nanoscale Metal–Organic Frameworks as High Performance Electrocatalyst for Oxygen Reduction Reaction. ACS Nano, 2014, 8, 12660-12668.	7.3	509
5	Threeâ€Dimensional Graphene/Metal Oxide Nanoparticle Hybrids for Highâ€Performance Capacitive Deionization of Saline Water. Advanced Materials, 2013, 25, 6270-6276.	11.1	499
6	A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy and Environmental Science, 2017, 10, 893-899.	15.6	412
7	Co ₃ O ₄ Hexagonal Platelets with Controllable Facets Enabling Highly Efficient Visibleâ€Light Photocatalytic Reduction of CO ₂ . Advanced Materials, 2016, 28, 6485-6490.	11.1	395
8	Metal–Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives. Advanced Materials, 2018, 30, e1800702.	11.1	362
9	Cage-Confinement Pyrolysis Route to Ultrasmall Tungsten Carbide Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2017, 139, 5285-5288.	6.6	336
10	A Wireless Textile-Based Sensor System for Self-Powered Personalized Health Care. Matter, 2020, 2, 896-907.	5.0	310
11	Carbonâ€Based Metalâ€Free Catalysts for Key Reactions Involved in Energy Conversion and Storage. Advanced Materials, 2019, 31, e1801526.	11.1	273
12	Carbonâ€Based Metalâ€Free Catalysts for Electrocatalytic Reduction of Nitrogen for Synthesis of Ammonia at Ambient Conditions. Advanced Materials, 2019, 31, e1805367.	11.1	247
13	Microwaveâ€Assisted Rapid Synthesis of Grapheneâ€5upported Single Atomic Metals. Advanced Materials, 2018, 30, e1802146.	11.1	244
14	Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects. Energy and Environmental Science, 2020, 13, 3185-3206.	15.6	225
15	A Flexible Rechargeable Zinc–Air Battery with Excellent Lowâ€Temperature Adaptability. Angewandte Chemie - International Edition, 2020, 59, 4793-4799.	7.2	217
16	Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Science Advances, 2015, 1, e1500372.	4.7	209
17	Photo-Rechargeable Fabrics as Sustainable and Robust Power Sources for Wearable Bioelectronics. Matter, 2020, 2, 1260-1269.	5.0	204
18	Recent Progress of Carbon-Supported Single-Atom Catalysts for Energy Conversion and Storage. Matter, 2020, 3, 1442-1476.	5.0	196

#	Article	IF	CITATIONS
19	Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. Journal of Materials Chemistry A, 2014, 2, 3719.	5.2	183
20	Anion Etching for Accessing Rapid and Deep Self-Reconstruction of Precatalysts for Water Oxidation. Matter, 2020, 3, 2124-2137.	5.0	177
21	A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting. Nano Energy, 2020, 67, 104235.	8.2	172
22	Reordering d Orbital Energies of Singleâ€Site Catalysts for CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2019, 58, 12711-12716.	7.2	166
23	Cationâ€Tuning Induced dâ€Band Center Modulation on Coâ€Based Spinel Oxide for Oxygen Reduction/Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	156
24	Promoting Energy Efficiency via a Selfâ€Adaptive Evaporative Cooling Hydrogel. Advanced Materials, 2020, 32, e1907307.	11.1	151
25	Insight into Structural Evolution, Active Sites, and Stability of Heterogeneous Electrocatalysts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	140
26	Cationâ€Vacancyâ€Enriched Nickel Phosphide for Efficient Electrosynthesis of Hydrogen Peroxides. Advanced Materials, 2022, 34, e2106541.	11.1	123
27	Activating Lattice Oxygen in Layered Lithium Oxides through Cation Vacancies for Enhanced Urea Electrolysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	116
28	An approaching-theoretical-capacity anode material for aqueous battery: Hollow hexagonal prism Bi2O3 assembled by nanoparticles. Energy Storage Materials, 2020, 28, 82-90.	9.5	109
29	Make it stereoscopic: interfacial design for full-temperature adaptive flexible zinc–air batteries. Energy and Environmental Science, 2021, 14, 4926-4935.	15.6	108
30	Self-Assembly of Ir-Based Nanosheets with Ordered Interlayer Space for Enhanced Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2022, 144, 2208-2217.	6.6	103
31	Metal–Organic Frameworks for Electrocatalysis: Beyond Their Derivatives. Small Science, 2021, 1, 2100015.	5.8	94
32	Bread-derived 3D macroporous carbon foams as high performance free-standing anode in microbial fuel cells. Biosensors and Bioelectronics, 2018, 122, 217-223.	5.3	91
33	Metallic Cobalt–Carbon Composite as Recyclable and Robust Magnetic Photocatalyst for Efficient CO ₂ Reduction. Small, 2018, 14, e1800762.	5.2	91
34	Efficient water oxidation under visible light by tuning surface defects on ceria nanorods. Journal of Materials Chemistry A, 2015, 3, 20465-20470.	5.2	82
35	Multistaged discharge constructing heterostructure with enhanced solid-solution behavior for long-life lithium-oxygen batteries. Nature Communications, 2019, 10, 5810.	5.8	80
36	Nanostructured photoelectrochemical biosensor for highly sensitive detection of organophosphorous pesticides. Biosensors and Bioelectronics, 2015, 64, 1-5.	5.3	78

#	Article	IF	CITATIONS
37	Recent advances in electrocatalytic chloride oxidation for chlorine gas production. Journal of Materials Chemistry A, 2021, 9, 18974-18993.	5.2	75
38	Porous Fe-Nx/C hybrid derived from bi-metal organic frameworks as high efficient electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2016, 311, 137-143.	4.0	71
39	Tungsten Oxide/Carbide Surface Heterojunction Catalyst with High Hydrogen Evolution Activity. ACS Energy Letters, 2020, 5, 3560-3568.	8.8	70
40	Delocalized electron effect on single metal sites in ultrathin conjugated microporous polymer nanosheets for boosting CO ₂ cycloaddition. Science Advances, 2020, 6, eaaz4824.	4.7	68
41	Re‣ooking into the Active Moieties of Metal Xâ€ides (X― = Phosphâ€, Sulfâ€, Nitrâ€, and Carbâ€) Tow Oxygen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2102918.	vard 7.8	68
42	Carbon Nanomaterials for Energy and Biorelated Catalysis: Recent Advances and Looking Forward. ACS Central Science, 2019, 5, 389-408.	5.3	67
43	Single-metal-atom catalysts: An emerging platform for electrocatalytic oxygen reduction. Chemical Engineering Journal, 2021, 406, 127135.	6.6	67
44	Sandwich‣ike Reduced Graphene Oxide/Carbon Black/Amorphous Cobalt Borate Nanocomposites as Bifunctional Cathode Electrocatalyst in Rechargeable Zincâ€Air Batteries. Advanced Energy Materials, 2018, 8, 1801495.	10.2	65
45	Optical Activity of Chiral Metal Nanoclusters. Accounts of Materials Research, 2021, 2, 21-35.	5.9	62
46	Rechargeable zinc-air batteries with neutral electrolytes: Recent advances, challenges, and prospects. EnergyChem, 2021, 3, 100055.	10.1	59
47	A Flexible Rechargeable Zinc–Air Battery with Excellent Lowâ€Temperature Adaptability. Angewandte Chemie, 2020, 132, 4823-4829.	1.6	57
48	Cu ₂ O clusters grown on TiO ₂ nanoplates as efficient photocatalysts for hydrogen generation. Inorganic Chemistry Frontiers, 2016, 3, 488-493.	3.0	54
49	Regulating electron transfer over asymmetric low-spin Co(II) for highly selective electrocatalysis. Chem Catalysis, 2022, 2, 372-385.	2.9	50
50	Octahedral Coordinated Trivalent Cobalt Enriched Multimetal Oxygenâ€Evolution Catalysts. Advanced Energy Materials, 2020, 10, 2002593.	10.2	47
51	Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Research, 2020, 13, 1928-1932.	5.8	46
52	Scalable and controllable fabrication of CNTs improved yolk-shelled Si anodes with advanced in operando mechanical quantification. Energy and Environmental Science, 2021, 14, 3502-3509.	15.6	45
53	Geometrically Deformed Iron-Based Single-Atom Catalysts for High-Performance Acidic Proton Exchange Membrane Fuel Cells. ACS Catalysis, 2022, 12, 5397-5406.	5.5	43
54	Ni5P4-NiP2 nanosheet matrix enhances electron-transfer kinetics for hydrogen recovery in microbial electrolysis cells. Applied Energy, 2018, 209, 56-64.	5.1	39

#	Article	IF	CITATIONS
55	Insight into Structural Evolution, Active Sites, and Stability of Heterogeneous Electrocatalysts. Angewandte Chemie, 2022, 134, .	1.6	38
56	Research on Carbon-Based Electrode Materials for Supercapacitors. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 130-148.	2.2	32
57	Atomically dispersed S-Fe-N4 for fast kinetics sodium-sulfur batteries via a dual function mechanism. Cell Reports Physical Science, 2021, 2, 100531.	2.8	31
58	Foldable and scrollable graphene paper with tuned interlayer spacing as high areal capacity anodes for sodium-ion batteries. Energy Storage Materials, 2021, 41, 395-403.	9.5	28
59	Ultrapermeable Composite Membranes Enhanced Via Doping with Amorphous MOF Nanosheets. ACS Central Science, 2021, 7, 671-680.	5.3	27
60	Three-Dimensional Hierarchical Porous Nanotubes Derived from Metal-Organic Frameworks for Highly Efficient Overall Water Splitting. IScience, 2020, 23, 100761.	1.9	26
61	Recent progress in all-inorganic metal halide nanostructured perovskites: Materials design, optical properties, and application. Frontiers of Physics, 2021, 16, 1.	2.4	26
62	Multiple Au cores in CeO2 hollow spheres for the superior catalytic reduction of p-nitrophenol. Chinese Journal of Catalysis, 2015, 36, 261-267.	6.9	24
63	Pt ₃ Co@Pt Core@shell Nanoparticles as Efficient Oxygen Reduction Electrocatalysts in Direct Methanol Fuel Cell. ChemCatChem, 2021, 13, 1587-1594.	1.8	23
64	Bimetallic Metal-Organic Framework Derived Metal-Carbon Hybrid for Efficient Reversible Oxygen Electrocatalysis. Frontiers in Chemistry, 2019, 7, 747.	1.8	22
65	Understanding the Ion-Sorption Dynamics in Functionalized Porous Carbons for Enhanced Capacitive Energy Storage. ACS Applied Materials & amp; Interfaces, 2020, 12, 2773-2782.	4.0	17
66	Enhanced Degradation of Sulfamethoxazole (SMX) in Toilet Wastewater by Photo-Fenton Reactive Membrane Filtration. Nanomaterials, 2020, 10, 180.	1.9	16
67	Nanostructured hexaazatrinaphthalene based polymers for advanced energy conversion and storage. Chemical Engineering Journal, 2022, 427, 130995.	6.6	16
68	Interfacial Engineering of 3D Hollow Mo-Based Carbide/Nitride Nanostructures. ACS Applied Materials & Interfaces, 2021, 13, 50524-50530.	4.0	16
69	Facile and surfactant-free synthesis of SnO2-graphene hybrids as high performance anode for lithium-ion batteries. Ionics, 2015, 21, 987-994.	1.2	14
70	Electron affinity regulation on ultrathin manganese oxide nanosheets toward ultra-stable pseudocapacitance. Journal of Materials Chemistry A, 2020, 8, 23257-23264.	5.2	14
71	Carbon-supported layered double hydroxide nanodots for efficient oxygen evolution: Active site identification and activity enhancement. Nano Research, 2021, 14, 3329-3336.	5.8	14
72	The biomimetic engineering of metal–organic frameworks with single-chiral-site precision for asymmetric hydrogenation. Journal of Materials Chemistry A, 2022, 10, 6463-6469.	5.2	14

#	Article	IF	CITATIONS
73	Cationâ€Tuning Induced dâ€Band Center Modulation on Coâ€Based Spinel Oxide for Oxygen Reduction/Evolution Reaction. Angewandte Chemie, 2022, 134, .	1.6	14
74	Metal-organic framework assembly derived hierarchically ordered porous carbon for oxygen reduction in both alkaline and acidic media. Chemical Engineering Journal, 2022, 430, 132762.	6.6	13
75	Metal–Organic Frameworks for Electrocatalysis: Beyond Their Derivatives. Small Science, 2021, 1, .	5.8	13
76	Activating Lattice Oxygen in Layered Lithium Oxides through Cation Vacancies for Enhanced Urea Electrolysis. Angewandte Chemie, 2022, 134, .	1.6	10
77	Study on the Oxidation Enhancement of Formic Acid and Formate Blended Fuel Solution on Pt Catalyst. Fuel Cells, 2013, 13, 167-172.	1.5	9
78	Discarded antibiotic mycelial residues derived nitrogen-doped porous carbon for electrochemical energy storage and simultaneous reduction of antibiotic resistance genes(ARGs). Environmental Research, 2021, 192, 110261.	3.7	8
79	Correlation and Improvement of Bimetallic Electronegativity on Metal–Organic Frameworks for Electrocatalytic Water Oxidation. Advanced Energy and Sustainability Research, 2021, 2, 2100055.	2.8	8
80	An efficient combination strategy for high-performance asymmetric-electrolyte metal–air batteries. Matter, 2021, 4, 1090-1092.	5.0	5
81	Realâ€Time Carbon Monoxide Detection using a Rotating Gold Ring Electrode: A Feasibility Study. ChemElectroChem, 2020, 7, 4417-4422.	1.7	4
82	Synthesis Metal-free Nitrogen-doped Porous Carbon by Removing Al from Al-MOFs as an Efficient Electrocatalyst for Oxygen Reduction Reaction. International Journal of Electrochemical Science, 2019, 14, 3024-3034.	0.5	2
83	A Wireless Textile Based Sensor System for Self-Powered Personalized Health Care. SSRN Electronic	0.4	2