James W Russell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4345644/publications.pdf

Version: 2024-02-01

		109137	1	161609
56	5,701	35		54
papers	citations	h-index		g-index
			ľ	
57	57	57		5934
37	37	37		3334
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Diabetic neuropathy. Nature Reviews Disease Primers, 2019, 5, 41.	18.1	692
2	Lifestyle Intervention for Pre-Diabetic Neuropathy. Diabetes Care, 2006, 29, 1294-1299.	4.3	509
3	High glucoseâ€induced oxidative stress and mitochondrial dysfunction in neurons. FASEB Journal, 2002, 16, 1738-1748.	0.2	462
4	Neurons Undergo Apoptosis in Animal and Cell Culture Models of Diabetes. Neurobiology of Disease, 1999, 6, 347-363.	2.1	379
5	Microvascular Complications of Impaired Glucose Tolerance. Diabetes, 2003, 52, 2867-2873.	0.3	321
6	Diabetes and Cognitive Impairment. Current Diabetes Reports, 2016, 16, 87.	1.7	318
7	Oxidative Stress and Programmed Cell Death in Diabetic Neuropathy. Annals of the New York Academy of Sciences, 2002, 959, 368-383.	1.8	274
8	The Utah Early Neuropathy Scale: a sensitive clinical scale for early sensory predominant neuropathy. Journal of the Peripheral Nervous System, 2008, 13, 218-227.	1.4	184
9	Uncoupling Proteins Prevent Glucose-Induced Neuronal Oxidative Stress and Programmed Cell Death. Diabetes, 2004, 53, 726-734.	0.3	158
10	Recent advances in drug-induced neuropathies. Current Opinion in Neurology, 2002, 15, 633-638.	1.8	153
11	Treatment of Diabetic Sensory Polyneuropathy. Current Treatment Options in Neurology, 2011, 13, 143-159.	0.7	124
12	Insulin-Like Growth Factor-I and Over-Expression of Bcl-xL Prevent Glucose-Mediated Apoptosis in Schwann Cells. Journal of Neuropathology and Experimental Neurology, 2001, 60, 147-160.	0.9	119
13	Insulin-like growth factor-I prevents apoptosis in neurons after nerve growth factor withdrawal. , 1998, 36, 455-467.		115
14	Overexpression of SIRT1 Protein in Neurons Protects against Experimental Autoimmune Encephalomyelitis through Activation of Multiple SIRT1 Targets. Journal of Immunology, 2013, 190, 4595-4607.	0.4	110
15	Physiological characterization of neuropathy in Fabry's disease. Muscle and Nerve, 2002, 26, 622-629.	1.0	102
16	Localization of the transcriptional coactivator PGC- $1\hat{l}\pm$ to GABAergic neurons during maturation of the rat brain. Journal of Comparative Neurology, 2007, 502, 1-18.	0.9	96
17	SOD2 protects neurons from injury in cell culture and animal models of diabetic neuropathy. Experimental Neurology, 2007, 208, 216-227.	2.0	95
18	New insights into the pathogenesis of diabetic neuropathy. Current Opinion in Neurology, 1999, 12, 553-563.	1.8	88

#	Article	IF	Citations
19	Role of mitochondria in diabetic peripheral neuropathy: Influencing the NAD+-dependent SIRT1–PGC-1α–TFAM pathway. International Review of Neurobiology, 2019, 145, 177-209.	0.9	84
20	Oxidative injury and neuropathy in diabetes and impaired glucose tolerance. Neurobiology of Disease, 2008, 30, 420-429.	2.1	80
21	PGC- \hat{l} t regulation of mitochondrial degeneration in experimental diabetic neuropathy. Neurobiology of Disease, 2014, 64, 118-130.	2.1	77
22	Impaired glucose tolerance?does it cause neuropathy?. Muscle and Nerve, 2001, 24, 1109-1112.	1.0	63
23	Diabetic Neuropathies. CONTINUUM Lifelong Learning in Neurology, 2014, 20, 1226-1240.	0.4	62
24	Clinical neuropathy scales in neuropathy associated with impaired glucose tolerance. Journal of Diabetes and Its Complications, 2015, 29, 372-377.	1.2	62
25	Reliability of quantitative sudomotor axon reflex testing and quantitative sensory testing in neuropathy of impaired glucose regulation. Muscle and Nerve, 2009, 39, 529-535.	1.0	61
26	Potential roles of PINK1 for increased PGC-1α-mediated mitochondrial fatty acid oxidation and their associations with Alzheimer disease and diabetes. Mitochondrion, 2014, 18, 41-48.	1.6	59
27	Protection against glucose-induced neuronal death by NAAG and GCP II inhibition is regulated by mGluR3. Journal of Neurochemistry, 2004, 89, 90-99.	2.1	57
28	IGF-I Promotes Peripheral Nervous System Myelination. Annals of the New York Academy of Sciences, 1999, 883, 124-130.	1.8	51
29	Autonomic dysfunction in obstructive sleep apnea is associated with impaired glucose regulation. Sleep Medicine, 2007, 8, 149-155.	0.8	50
30	Metabotropic glutamate receptor 3 protects neurons from glucose-induced oxidative injury by increasing intracellular glutathione concentration. Journal of Neurochemistry, 2007, 101, 342-354.	2.1	50
31	Advances in Understanding Drug-Induced Neuropathies. Drug Safety, 2006, 29, 23-30.	1.4	46
32	Mitochondrial transcription factor A regulation of mitochondrial degeneration in experimental diabetic neuropathy. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E132-E141.	1.8	46
33	Overexpression of Sirtuin 1 protein in neurons prevents and reverses experimental diabetic neuropathy. Brain, 2019, 142, 3737-3752.	3.7	46
34	Physical activity and dietary interventions in diabetic neuropathy: a systematic review. Clinical Autonomic Research, 2019, 29, 443-455.	1.4	45
35	The dilemma of diabetes in chronic inflammatory demyelinating polyneuropathy. Journal of Diabetes and Its Complications, 2016, 30, 1401-1407.	1.2	43
36	Symptoms of Autonomic Dysfunction in Systemic Sclerosis Assessed by the COMPASS-31 Questionnaire. Journal of Rheumatology, 2018, 45, 1145-1152.	1.0	40

#	Article	IF	CITATIONS
37	Brain diabetic neurodegeneration segregates with low intrinsic aerobic capacity. Annals of Clinical and Translational Neurology, 2014, 1, 589-604.	1.7	39
38	Transforming growth factor \hat{l}^2 induces cellular injury in experimental diabetic neuropathy. Experimental Neurology, 2008, 211, 469-479.	2.0	37
39	SIRT1 and NAD+ precursors: Therapeutic targets in multiple sclerosis a review. Journal of Neuroimmunology, 2017, 304, 29-34.	1.1	36
40	Metabotropic glutamate receptor regulation of neuronal cell death. Experimental Neurology, 2003, 184, 97-105.	2.0	35
41	Nitrosative Injury and Antioxidant Therapy in the Management of Diabetic Neuropathy. Journal of Investigative Medicine, 2004, 52, 33-44.	0.7	31
42	Identification of novel targets for PGC- $1\hat{1}\pm$ and histone deacetylase inhibitors in neuroblastoma cells. Biochemical and Biophysical Research Communications, 2009, 379, 578-582.	1.0	31
43	Metabotropic Glutamate Receptors (mGluRs) and Diabetic Neuropathy. Current Drug Targets, 2008, 9, 85-93.	1.0	25
44	Content validity of symptom-based measures for diabetic, chemotherapy, and HIV peripheral neuropathy. Muscle and Nerve, 2017, 55, 366-372.	1.0	24
45	mGluR2/3 activation of the SIRT1 axis preserves mitochondrial function in diabetic neuropathy. Annals of Clinical and Translational Neurology, 2017, 4, 844-858.	1.7	23
46	A novel PGC- $\hat{\Pi}_{\pm}$ isoform in brain localizes to mitochondria and associates with PINK1 and VDAC. Biochemical and Biophysical Research Communications, 2013, 435, 671-677.	1.0	22
47	Clinician-rated measures for distal symmetrical axonal polyneuropathy. Neurology, 2019, 93, 346-360.	1.5	19
48	Regulation of PGC-1α and PGC-1α-responsive genes with forskolin-induced Schwann cell differentiation. Neuroscience Letters, 2008, 439, 269-274.	1.0	16
49	NAD+ Precursors Repair Mitochondrial Function in Diabetes and Prevent Experimental Diabetic Neuropathy. International Journal of Molecular Sciences, 2022, 23, 4887.	1.8	11
50	Is there cardiac autonomic neuropathy in prediabetes?. Autonomic Neuroscience: Basic and Clinical, 2020, 229, 102722.	1.4	10
51	The Relationship Between Autonomic Dysfunction of the Gastrointestinal Tract and Emotional Distress in Patients With Systemic Sclerosis. Journal of Clinical Rheumatology, 2021, 27, 11-17.	0.5	7
52	Validation of a simple disease-specific, quality-of-life measure for diabetic polyneuropathy. Neurology, 2018, 90, e2034-e2041.	1.5	6
53	Does duloxetine safely and effectively reduce the severity of diabetic peripheral neuropathic pain?. Nature Clinical Practice Neurology, 2006, 2, 18-19.	2.7	4
54	Alpha-lipoic acid and frataxin: A new indication for an old antioxidant?. Experimental Neurology, 2009, 218, 9-10.	2.0	2

#	Article	IF	CITATIONS
55	Use of non-invasive ventilation to facilitate extubation in a patient with amyotrophic lateral sclerosis with hypercapnic respiratory failure. Neurology International, 2019, 11, 8102.	1.3	1
56	Strategies for the prevention or reversal of neuropathy. , 2022, , 259-281.		0