
Ocean Cheung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4345642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gas sorption properties and kinetics of porous bismuth-based metal-organic frameworks and the selective CO2 and SF6 sorption on a new bismuth trimesate-based structure UU-200. Microporous and Mesoporous Materials, 2022, 329, 111548.	2.2	19
2	Synthesis, crystal structure, and topology of a polycatenated bismuth coordination polymer. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2022, 77, 231-236.	0.3	2
3	Synthetic solid oxide sorbents for CO ₂ capture: state-of-the art and future perspectives. Journal of Materials Chemistry A, 2022, 10, 1682-1705.	5.2	40
4	Chiral Lanthanum Metal–Organic Framework with Gated CO ₂ Sorption and Concerted Framework Flexibility. Journal of the American Chemical Society, 2022, 144, 8725-8733.	6.6	18
5	Crystalline Cu(<scp>ii</scp>) metal–organic frameworks based on a carboxamide pincer ligand and an N ^{CO} N ^{CO} N–Pd(<scp>ii</scp>) pincer complex. CrystEngComm, 2021, 23, 7418-7424.	1.3	3
6	A unified topology approach to dot-, rod-, and sheet-MOFs. CheM, 2021, 7, 2491-2512.	5.8	30
7	Selective adsorption of CO2 and SF6 on mixed-linker ZIF-7–8s: The effect of linker substitution on uptake capacity and kinetics. Chemical Engineering Journal, 2021, 422, 130117.	6.6	32
8	The effects of additives on the porosity and stability of amorphous calcium carbonate. Microporous and Mesoporous Materials, 2020, 292, 109736.	2.2	15
9	Hierarchical micro-reactor as electrodes for water splitting by metal rod tipped carbon nanocapsule self-assembly in carbonized wood. Applied Catalysis B: Environmental, 2020, 264, 118536.	10.8	25
10	Breathing Metal–Organic Framework Based on Flexible Inorganic Building Units. Crystal Growth and Design, 2020, 20, 320-329.	1.4	31
11	Highly Porous Amorphous Calcium Phosphate for Drug Delivery and Bio-Medical Applications. Nanomaterials, 2020, 10, 20.	1.9	36
12	Catalytic cracking of Etek lignin with zirconia supported metal-oxides for alkyl and alkoxy phenols recovery. Bioresource Technology, 2020, 317, 124008.	4.8	15
13	In Vitro Performance and Chemical Stability of Lipid-Based Formulations Encapsulated in a Mesoporous Magnesium Carbonate Carrier. Pharmaceutics, 2020, 12, 426.	2.0	7
14	Top-Down Approach Making Anisotropic Cellulose Aerogels as Universal Substrates for Multifunctionalization. ACS Nano, 2020, 14, 7111-7120.	7.3	147
15	An in vitro dissolution–digestion–permeation assay for the study of advanced drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 149, 21-29.	2.0	21
16	Metal–Organic Frameworks with Hexakis(4-carboxyphenyl)benzene: Extensions to Reticular Chemistry and Introducing Foldable Nets. Journal of the American Chemical Society, 2020, 142, 9471-9481.	6.6	26
17	Selective Adsorption of CO on Zeolites NaK-ZK-4 with Si/Al of 1.8-2.8. ACS Omega, 2020, 5, 25371-25380.	1.6	0
18	Selective Adsorption of CO ₂ on Zeolites NaK-ZK-4 with Si/Al of 1.8–2.8. ACS Omega, 2020, 5, 25371-25380	1.6	21

OCEAN CHEUNG

#	Article	IF	CITATIONS
19	Mesoscale Transformation of Amorphous Calcium Carbonate to Porous Vaterite Microparticles with Morphology Control. Crystal Growth and Design, 2019, 19, 5075-5087.	1.4	27
20	Inorganic carbonate composites as potential high temperature CO ₂ sorbents with enhanced cycle stability. RSC Advances, 2019, 9, 20273-20280.	1.7	11
21	Carbon dioxide adsorption on mesoporous magnesium carbonate. Energy Procedia, 2019, 158, 4671-4676.	1.8	4
22	Exploring the Use of Amine Modified Mesoporous Magnesium Carbonate for the Delivery of Salicylic Acid in Topical Formulations: In Vitro Cytotoxicity and Drug Release Studies. Molecules, 2019, 24, 1820.	1.7	9
23	Highly Porous Metalloporphyrin Covalent Ionic Frameworks with Wellâ€Defined Cooperative Functional Groups as Excellent Catalysts for CO ₂ Cycloaddition. Chemistry - A European Journal, 2019, 25, 9052-9059.	1.7	36
24	Amorphous Mesoporous Magnesium Carbonate as a Functional Support for UV-Blocking Semiconductor Nanoparticles for Cosmetic Applications. ACS Omega, 2019, 4, 4429-4436.	1.6	18
25	Amine-Modified Mesoporous Magnesium Carbonate as an Effective Adsorbent for Azo Dyes. ACS Omega, 2019, 4, 2973-2979.	1.6	16
26	The effect of cerium incorporation on the catalytic performance of cobalt and manganese containing layer double oxides forÂacetone oxidation. Journal of Chemical Technology and Biotechnology, 2019, 94, 3753-3762.	1.6	18
27	Hierarchical Porous Carbon Synthesized from Novel Porous Amorphous Calcium or Magnesium Citrate with Enhanced SF ₆ Uptake and SF ₆ /N ₂ Selectivity. ACS Applied Nano Materials, 2019, 2, 778-789.	2.4	28
28	Amine-functionalised mesoporous magnesium carbonate: Dielectric spectroscopy studies of interactions with water and stability. Materials Chemistry and Physics, 2018, 216, 332-338.	2.0	11
29	Synthesis, Transformation, Catalysis, and Gas Sorption Investigations on the Bismuth Metal–Organic Framework CAUâ€17. European Journal of Inorganic Chemistry, 2018, 2018, 3496-3503.	1.0	57
30	Amorphous Calcium Carbonate Constructed from Nanoparticle Aggregates with Unprecedented Surface Area and Mesoporosity. ACS Applied Materials & Interfaces, 2018, 10, 21556-21564.	4.0	46
31	A Modified In Situ Method to Determine Release from a Complex Drug Carrier in Particle-Rich Suspensions. AAPS PharmSciTech, 2018, 19, 2859-2865.	1.5	6
32	Elucidation of the elusive structure and formula of the active pharmaceutical ingredient bismuth subgallate by continuous rotation electron diffraction. Chemical Communications, 2017, 53, 7018-7021.	2.2	86
33	Effects of amine modification of mesoporous magnesium carbonate on controlled drug release. International Journal of Pharmaceutics, 2017, 524, 141-147.	2.6	13
34	Mesoporous Cladophora cellulose separators for lithium-ion batteries. Journal of Power Sources, 2016, 321, 185-192.	4.0	98
35	The effect of mesoporous TiO2 pore size on the performance of solid-state dye sensitized solar cells based on photoelectrochemically polymerized Poly(3,4-ethylenedioxythiophene) hole conductor. Electrochimica Acta, 2016, 210, 23-31.	2.6	8
36	Nanostructure and pore size control of template-free synthesised mesoporous magnesium carbonate. RSC Advances, 2016, 6, 74241-74249.	1.7	30

OCEAN CHEUNG

#	Article	IF	CITATIONS
37	Study of mesoporous magnesium carbonate in contact with whole human blood. RSC Advances, 2016, 6, 52810-52816.	1.7	3
38	Highly selective uptake of carbon dioxide on the zeolite Na _{10.2} KCs _{0.8} -LTA – a possible sorbent for biogas upgrading. Physical Chemistry Chemical Physics, 2016, 18, 16080-16083.	1.3	22
39	Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56. Applied Energy, 2016, 162, 613-621.	5.1	102
40	Aluminophosphate monoliths with high CO ₂ -over-N ₂ selectivity and CO ₂ capture capacity. RSC Advances, 2014, 4, 55877-55883.	1.7	19
41	K ⁺ Exchanged Zeolite ZK-4 as a Highly Selective Sorbent for CO ₂ . Langmuir, 2014, 30, 9682-9690.	1.6	26
42	Zeolites and related sorbents with narrow pores for CO ₂ separation from flue gas. RSC Advances, 2014, 4, 14480-14494.	1.7	210
43	CO 2 selective NaMg-CTS-1 and its structural formation from the titanium silicate based molecule sieve NaMg-ETS-4. Microporous and Mesoporous Materials, 2014, 198, 63-73.	2.2	7
44	Visualizing Gas Adsorption on Porous Solids: Four Simple, Effective Demonstrations. Journal of Chemical Education, 2014, 91, 1468-1472.	1.1	3
45	Adsorption kinetics for CO2 on highly selective zeolites NaKA and nano-NaKA. Applied Energy, 2013, 112, 1326-1336.	5.1	110
46	Interpenetrated metal–organic frameworks and their uptake of CO2 at relatively low pressures. Journal of Materials Chemistry, 2012, 22, 10345.	6.7	73
47	Silicoaluminophosphates as CO2 sorbents. Microporous and Mesoporous Materials, 2012, 156, 90-96.	2.2	71
48	Aluminophosphates for CO ₂ Separation. ChemSusChem, 2011, 4, 91-97.	3.6	70