
Tali Feferman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4345600/publications.pdf Version: 2024-02-01

TALL FEEDMAN

#	Article	lF	CITATIONS
1	Culturing CTLs under Hypoxic Conditions Enhances Their Cytolysis and Improves Their Anti-tumor Function. Cell Reports, 2017, 20, 2547-2555.	6.4	118
2	Combined Analysis of Antigen Presentation and T-cell Recognition Reveals Restricted Immune Responses in Melanoma. Cancer Discovery, 2018, 8, 1366-1375.	9.4	80
3	Overexpression of IFN-Induced Protein 10 and Its Receptor CXCR3 in Myasthenia Gravis. Journal of Immunology, 2005, 174, 5324-5331.	0.8	76
4	IL-6 and Akt are involved in muscular pathogenesis in myasthenia gravis. Acta Neuropathologica Communications, 2015, 3, 1.	5.2	69
5	Ex Vivo Generated Regulatory T Cells Modulate Experimental Autoimmune Myasthenia Gravis. Journal of Immunology, 2008, 180, 2132-2139.	0.8	67
6	Testing lgG antibodies against the RBD of SARS-CoV-2 is sufficient and necessary for COVID-19 diagnosis. PLoS ONE, 2020, 15, e0241164.	2.5	47
7	Anti-SARS-CoV-2 antibodies elicited by COVID-19 mRNA vaccine exhibit a unique glycosylation pattern. Cell Reports, 2021, 37, 110114.	6.4	44
8	Immunosuppression of rat myasthenia gravis by oral administration of a syngeneic acetylcholine receptor fragment. Journal of Neuroimmunology, 2004, 152, 112-120.	2.3	39
9	The susceptibility of Aireâ^'/â^' mice to experimental myasthenia gravis involves alterations in regulatory T cells. Journal of Autoimmunity, 2011, 36, 16-24.	6.5	38
10	Intravenous immunoglobulin suppresses experimental myasthenia gravis: Immunological mechanisms. Journal of Neuroimmunology, 2006, 176, 187-197.	2.3	36
11	Overexpression of phosphodiesterases in experimental autoimmune myasthenia gravis: suppression of disease by a phosphodiesterase inhibitor. FASEB Journal, 2006, 20, 374-376.	0.5	36
12	Bispecific antibodies increase the therapeutic window of CD40 agonists through selective dendritic cell targeting. Nature Cancer, 2022, 3, 287-302.	13.2	29
13	Active dissemination of cellular antigens by DCs facilitates CD8 ⁺ Tâ€cell priming in lymph nodes. European Journal of Immunology, 2017, 47, 1802-1818.	2.9	25
14	Reduced CTL motility and activity in avascular tumor areas. Cancer Immunology, Immunotherapy, 2019, 68, 1287-1301.	4.2	21
15	Suppression of Myasthenia Gravis by Antigen-Specific Mucosal Tolerance and Modulation of Cytokines and Costimulatory Factors. Annals of the New York Academy of Sciences, 2003, 998, 533-536.	3.8	19
16	Suppression of experimental autoimmune myasthenia gravis by inhibiting the signaling between IFN-γ inducible protein 10 (IP-10) and its receptor CXCR3. Journal of Neuroimmunology, 2009, 209, 87-95.	2.3	19
17	Breakage of tolerance to hidden cytoplasmic epitopes of the acetylcholine receptor in experimental autoimmune myasthenia gravis. Journal of Neuroimmunology, 2003, 140, 153-158.	2.3	17
18	Lung Injury Repair by Transplantation of Adult Lung Cells Following Preconditioning of Recipient Mice. Stem Cells Translational Medicine, 2018, 7, 68-77.	3.3	15

Tali Feferman

#	Article	IF	CITATIONS
19	The bone marrow is patrolled by NK cells that are primed and expand in response to systemic viral activation. European Journal of Immunology, 2018, 48, 1137-1152.	2.9	12
20	Glatiramer acetate increases T- and B -regulatory cells and decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) in an animal model of multiple sclerosis. Journal of Neuroimmunology, 2020, 345, 577281.	2.3	11
21	<i>Immunosuppression of EAMG by IVIG Is Mediated by a Diseaseâ€specific Antiâ€immunoglobulin Fraction</i> . Annals of the New York Academy of Sciences, 2008, 1132, 244-248.	3.8	10
22	Involvement of phosphodiesterases in autoimmune diseases. Journal of Neuroimmunology, 2010, 220, 43-51.	2.3	10
23	Experimental myasthenia gravis in Aireâ€deficient mice: a link between Aire and regulatory T cells. Annals of the New York Academy of Sciences, 2012, 1275, 107-113.	3.8	10
24	Suppression of experimental autoimmune myasthenia gravis by combination therapy: Pentoxifylline as a steroid-sparing agent. Journal of Neuroimmunology, 2008, 201-202, 128-135.	2.3	9
25	Regulatory T cell–based immunotherapies in experimental autoimmune myasthenia gravis. Annals of the New York Academy of Sciences, 2012, 1274, 120-126.	3.8	8
26	Epitope Spreading to Hidden Cytoplasmic Regions of the Acetylcholine Receptor in Experimental Autoimmune Myasthenia Gravis. Annals of the New York Academy of Sciences, 2003, 998, 388-390.	3.8	7
27	Suppression of Experimental Autoimmune Myasthenia Gravis by Intravenous Immunoglobulin and Isolation of a Disease-Specific IgG Fraction. Annals of the New York Academy of Sciences, 2007, 1110, 550-558.	3.8	7
28	DNA Microarray in Search of New Drug Targets for Myasthenia Gravis. Annals of the New York Academy of Sciences, 2007, 1107, 111-117.	3.8	6
29	Corrigendum to "Suppression of experimental autoimmune myasthenia gravis by combination therapy: Pentoxifylline as a steroid-sparing agent―[J. Neuroimmunol. 201–202 (2008) 128–135]. Journal of Neuroimmunology, 2009, 215, 129.	2.3	1
30	Abstract B84: Live imaging reveals hypoxia to be a limiting factor in CTL-mediated tumor rejection. , 2015, , .		0
31	Abstract B06: Imaging regulatory mechanisms that limit intratumoral CTL function in a mouse melanoma model. , 2015, , .		0
32	Abstract B102: Releasing oxygen-restricted CTL function: Insights from live intratumoral imaging. , 2016, , .		0