
Paul A Warren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4345331/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The impact of choice discriminability and outcome valence on visual decision making under risk. Vision Research, 2022, 199, 108073.	1.4	0
2	The effect of eccentricity on the linear-radial speed bias: Testing the motion-in-depth model. Vision Research, 2021, 189, 93-103.	1.4	1
3	Detection of scene-relative object movement and optic flow parsing across the adult lifespan. Journal of Vision, 2020, 20, 12.	0.3	2
4	Collinear facilitation and contour integration in autistic adults: Examining lateral and feedback connectivity. Vision Research, 2020, 177, 56-67.	1.4	9
5	The Effect of Ageing on Optimal Integration of Conflicting and Non-Conflicting Visual–Haptic Stimuli. Multisensory Research, 2019, 32, 771-796.	1.1	6
6	The Primary Role of Flow Processing in the Identification of Scene-Relative Object Movement. Journal of Neuroscience, 2018, 38, 1737-1743.	3.6	15
7	Visual-tactile selective attention in autism spectrum condition: An increased influence of visual distractors Journal of Experimental Psychology: General, 2018, 147, 1309-1324.	2.1	16
8	A re-examination of "bias―in human randomness perception Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 663-680.	0.9	9
9	Who "believes―in the Gambler's Fallacy and why?. Journal of Experimental Psychology: General, 2017, 146, 63-76.	2.1	13
10	Individual differences in the dynamics of collinear facilitation?. Vision Research, 2017, 133, 61-72.	1.4	6
11	The Effect of Expected Value on Attraction Effect Preference Reversals. Journal of Behavioral Decision Making, 2017, 30, 785-793.	1.7	23
12	Similarities in Autistic and Neurotypical Visual–Haptic Perception When Making Judgements About ConflictingÂSensory Stimuli. Multisensory Research, 2017, 30, 509-536.	1.1	2
13	Brief Report: Which Came First? Exploring Crossmodal Temporal Order Judgements and Their Relationship with Sensory Reactivity in Autism and Neurotypicals. Journal of Autism and Developmental Disorders, 2017, 47, 215-223.	2.7	23
14	Contrast effects on speed perception for linear and radial motion. Vision Research, 2017, 140, 66-72.	1.4	14
15	Peripheral Visual Cues Contribute to the Perception of Object Movement During Self-Movement. I-Perception, 2017, 8, 204166951773607.	1.4	14
16	Why contextual preference reversals maximize expected value Psychological Review, 2016, 123, 368-391.	3.8	40
17	Collinear facilitation and contour integration in autism: evidence for atypical visual integration. Frontiers in Human Neuroscience, 2015, 9, 115.	2.0	14
18	Adapting the Crossmodal Congruency Task for Measuring the Limits of Visual–Tactile Interactions Within and Between Groups. Multisensory Research, 2015, 28, 227-244.	1.1	16

PAUL A WARREN

#	Article	IF	CITATIONS
19	Investigating Visual–Tactile Interactions over Time and Space in Adults with Autism. Journal of Autism and Developmental Disorders, 2015, 45, 3316-3326.	2.7	20
20	Are perceptuo-motor decisions really more optimal than cognitive decisions?. Cognition, 2014, 130, 397-416.	2.2	13
21	Perceptuo-motor, cognitive, and description-based decision-making seem equally good. Proceedings of the United States of America, 2013, 110, 16271-16276.	7.1	50
22	Flow parsing and heading perception show similar dependence on quality and quantity of optic flow. Frontiers in Behavioral Neuroscience, 2013, 7, 49.	2.0	16
23	Heading recovery from optic flow: comparing performance of humans and computational models. Frontiers in Behavioral Neuroscience, 2013, 7, 53.	2.0	11
24	Visual extrapolation under risk: human observers estimate and compensate for exogenous uncertainty. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2171-2179.	2.6	13
25	Does optic flow parsing depend on prior estimation of heading?. Journal of Vision, 2012, 12, 8-8.	0.3	20
26	Knowing When to Move On. Psychological Science, 2012, 23, 589-597.	3.3	15
27	Postscript: All together now: "Three heads are better than fourâ€. Psychological Review, 2010, 117, 711-711.	3.8	1
28	Why three heads are a better bet than four: A reply to Sun, Tweney, and Wang (2010) Psychological Review, 2010, 117, 706-711.	3.8	39
29	Recovery of surface pose from texture orientation statistics under perspective projection. Biological Cybernetics, 2010, 103, 199-212.	1.3	6
30	A Bayesian Model of Perceived Head-Centered Velocity during Smooth Pursuit Eye Movement. Current Biology, 2010, 20, 757-762.	3.9	110
31	Ground-plane influences on size estimation in early visual processing. Vision Research, 2010, 50, 1510-1518.	1.4	4
32	Perceptions of randomness: Why three heads are better than four Psychological Review, 2009, 116, 454-461.	3.8	131
33	Perception of scene-relative object movement: Optic flow parsing and the contribution of monocular depth cues. Vision Research, 2009, 49, 1406-1419.	1.4	61
34	Optic Flow Processing for the Assessment of Object Movement during Ego Movement. Current Biology, 2009, 19, 1555-1560.	3.9	136
35	Evidence for flow-parsing in radial flow displays. Vision Research, 2008, 48, 655-663.	1.4	59
36	Rapid size scaling in visual search. Vision Research, 2008, 48, 1820-1830.	1.4	3

PAUL A WARREN

#	Article	IF	CITATIONS
37	Perception of object trajectory: Parsing retinal motion into self and object movement components. Journal of Vision, 2007, 7, 2.	0.3	62
38	The pop out of scene-relative object movement against retinal motion due to self-movement. Cognition, 2007, 105, 237-245.	2.2	67
39	Perception of object movement during self-movement. , 2005, , .		1
40	Moving observers, relative retinal motion and the detection of object movement. Current Biology, 2005, 15, R542-R543.	3.9	88
41	Explicit estimation of visual uncertainty in human motion processing. Vision Research, 2005, 45, 3050-3059.	1.4	25
42	Consistency of Listing?s law and reciprocal innervation with pseudo-inverse control of eye position in 3-D. Biological Cybernetics, 2004, 91, 1-9.	1.3	4
43	Interpolating sampled contours in 3D: perturbation analyses. Vision Research, 2004, 44, 815-832.	1.4	11
44	Interpolating sampled contours in 3-D: analyses of variability and bias. Vision Research, 2002, 42, 2431-2446.	1.4	20
45	A simple control law generates Listing's positions in a detailed model of the extraocular muscle system. Vision Research, 2000, 40, 3743-3758.	1.4	48
46	Optimality of Position Commands to Horizontal Eye Muscles: A Test of the Minimum-Norm Rule. Journal of Neurophysiology, 1999, 81, 735-757.	1.8	20