## Cuihong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4345271/publications.pdf Version: 2024-02-01



СшномсТи

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Planar Copolymer for High Efficiency Polymer Solar Cells. Journal of the American Chemical<br>Society, 2009, 131, 14612-14613.                                                                                              | 13.7 | 407       |
| 2  | Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells. Nature Communications, 2019, 10, 3038.                                                                    | 12.8 | 297       |
| 3  | Reversible Switching Emissions of Tetraphenylethene Derivatives among Multiple Colors with Solvent<br>Vapor, Mechanical, and Thermal Stimuli. Journal of Physical Chemistry C, 2012, 116, 21967-21972.                        | 3.1  | 179       |
| 4  | Reversible Luminescence Switching of an Organic Solid: Controllable On–Off Persistent Room<br>Temperature Phosphorescence and Stimulated Multiple Fluorescence Conversion. Advanced Optical<br>Materials, 2015, 3, 1184-1190. | 7.3  | 173       |
| 5  | Dihydronaphthyl-based [60]fullerene bisadducts for efficient and stable polymer solar cells. Chemical<br>Communications, 2012, 48, 425-427.                                                                                   | 4.1  | 122       |
| 6  | Highly Efficient Planar Perovskite Solar Cells Via Interfacial Modification with Fullerene Derivatives.<br>Small, 2016, 12, 1098-1104.                                                                                        | 10.0 | 107       |
| 7  | 9-Alkylidene-9 <i>H</i> -Fluorene-Containing Polymer for High-Efficiency Polymer Solar Cells.<br>Macromolecules, 2011, 44, 7617-7624.                                                                                         | 4.8  | 99        |
| 8  | 1,8-Naphthalimide-Based Planar Small Molecular Acceptor for Organic Solar Cells. ACS Applied<br>Materials & Interfaces, 2016, 8, 5475-5483.                                                                                   | 8.0  | 80        |
| 9  | 4-Alkyl-3,5-difluorophenyl-Substituted Benzodithiophene-Based Wide Band Gap Polymers for<br>High-Efficiency Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 3686-3692.                                      | 8.0  | 75        |
| 10 | Switching the emission of tetrakis(4-methoxyphenyl)ethylene among three colors in the solid state.<br>New Journal of Chemistry, 2013, 37, 1696.                                                                               | 2.8  | 59        |
| 11 | Phenylethyne-Bridged Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 13391-13397.                                                                                                            | 3.1  | 58        |
| 12 | Triindole-cored star-shaped molecules for organic solar cells. Journal of Materials Chemistry A, 2013,<br>1, 7657.                                                                                                            | 10.3 | 53        |
| 13 | Benzothiadiazole based conjugated polymers for high performance polymer solar cells. Journal of<br>Materials Chemistry A, 2015, 3, 20195-20200.                                                                               | 10.3 | 52        |
| 14 | A New Class of Conjugated Polymers Having Porphyrin, Poly(p-phenylenevinylene), and Fullerene Units<br>for Efficient Electron Transfer. Macromolecules, 2006, 39, 5319-5325.                                                  | 4.8  | 49        |
| 15 | A nonfullerene acceptor for wide band gap polymer based organic solar cells. Chemical<br>Communications, 2016, 52, 469-472.                                                                                                   | 4.1  | 48        |
| 16 | Conjugated polymers with broad absorption: Synthesis and application in polymer solar cells. Journal of Polymer Science Part A, 2010, 48, 2571-2578.                                                                          | 2.3  | 46        |
| 17 | 1,8-Naphthalimide-based nonfullerene acceptors for wide optical band gap polymer solar cells with an<br>ultrathin active layer thickness of 35 nm. Journal of Materials Chemistry C, 2016, 4, 5656-5663.                      | 5.5  | 42        |
| 18 | A 1,8-naphthalimide based small molecular acceptor for polymer solar cells with high open circuit voltage. Journal of Materials Chemistry C, 2015, 3, 6979-6985.                                                              | 5.5  | 41        |

Cuihong Li

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Unusual Fluorescence Enhancement of a Novel Carbazolyldiacetylene Bound to Gold Nanoparticles.<br>Langmuir, 2007, 23, 6754-6760.                                                                                           | 3.5  | 40        |
| 20 | Siloleâ€containing polymers for highâ€efficiency polymer solar cells. Journal of Polymer Science Part A, 2011, 49, 4267-4274.                                                                                              | 2.3  | 40        |
| 21 | Synthesis of a novel poly( <i>para</i> â€phenylene ethynylene) for highly selective and sensitive sensing<br>mercury (II) ions. Journal of Polymer Science Part A, 2008, 46, 1998-2007.                                    | 2.3  | 38        |
| 22 | Side Chain Influence on the Morphology and Photovoltaic Performance of<br>5-Fluoro-6-alkyloxybenzothiadiazole and Benzodithiophene Based Conjugated Polymers. ACS Applied<br>Materials & Interfaces, 2015, 7, 10710-10717. | 8.0  | 38        |
| 23 | Perylene diimide based star-shaped small molecular acceptors for high efficiency organic solar cells.<br>Journal of Materials Chemistry C, 2019, 7, 819-825.                                                               | 5.5  | 37        |
| 24 | Spirobifluorene-Based Conjugated Polymers for Polymer Solar Cells with High Open-Circuit Voltage.<br>Macromolecules, 2012, 45, 3017-3022.                                                                                  | 4.8  | 34        |
| 25 | Switching emissions of two tetraphenylethene derivatives with solvent vapor, mechanical, and thermal stimuli. Science Bulletin, 2013, 58, 2723-2727.                                                                       | 1.7  | 34        |
| 26 | Conjugated polymers with 2,7-linked 3,6-difluorocarbazole as donor unit for high efficiency polymer solar cells. Polymer Chemistry, 2013, 4, 2773.                                                                         | 3.9  | 31        |
| 27 | 9-Arylidene-9 <i>H</i> -Fluorene-Containing Polymers for High Efficiency Polymer Solar Cells. ACS<br>Applied Materials & Interfaces, 2014, 6, 1601-1607.                                                                   | 8.0  | 31        |
| 28 | Novel isoindigo-based conjugated polymers for solar cells and field effect transistors. Polymer Chemistry, 2013, 4, 3563.                                                                                                  | 3.9  | 30        |
| 29 | A propeller-shaped perylene diimide hexamer as a nonfullerene acceptor for organic solar cells.<br>Journal of Materials Chemistry C, 2018, 6, 9336-9340.                                                                   | 5.5  | 28        |
| 30 | 5,6-Difluorobenzothiadiazole and silafluorene based conjugated polymers for organic photovoltaic cells. Journal of Materials Chemistry C, 2014, 2, 5116-5123.                                                              | 5.5  | 27        |
| 31 | The Process of Functional Conjugated Organic Polymers Derived from Tripleâ€Bond Building Blocks.<br>Macromolecular Chemistry and Physics, 2008, 209, 1541-1552.                                                            | 2.2  | 26        |
| 32 | Hyperbranched polymer as an acceptor for polymer solar cells. Chemical Communications, 2017, 53, 537-540.                                                                                                                  | 4.1  | 26        |
| 33 | Elimination of the J–V hysteresis of planar perovskite solar cells by interfacial modification with a thermo-cleavable fullerene derivative. Journal of Materials Chemistry A, 2016, 4, 17649-17654.                       | 10.3 | 24        |
| 34 | Naphthalene core-based noncovalently fused-ring electron acceptors: effects of linkage positions on photovoltaic performances. Journal of Materials Chemistry C, 2019, 7, 15141-15147.                                     | 5.5  | 24        |
| 35 | Efficient Organic Solar Cells Based on Non-Fullerene Acceptors with Two Planar Thiophene-Fused<br>Perylene Diimide Units. ACS Applied Materials & Interfaces, 2020, 12, 10746-10754.                                       | 8.0  | 23        |
| 36 | Dihydropyreno[1,2-b:6,7-b′]dithiophene based electron acceptors for high efficiency as-cast organic<br>solar cells. Journal of Materials Chemistry A, 2019, 7, 5943-5948.                                                  | 10.3 | 21        |

Cuihong Li

| #  | Article                                                                                                                                                                                                                   | IF           | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 37 | Influence of polymer side chains on the photovoltaic performance of non-fullerene organic solar cells. Journal of Materials Chemistry C, 2017, 5, 937-942.                                                                | 5.5          | 19        |
| 38 | Designing a High-Performance A-D-A Fused-Ring Electron Acceptor <i>via</i> Noncovalently<br>Conformational Locking and Tailoring Its End Groups. Wuli Huaxue Xuebao/ Acta Physico - Chimica<br>Sinica, 2019, 35, 355-360. | 4.9          | 19        |
| 39 | Synthesis of thiophene-containing conjugated polymers from 2,5-thiophenebis(boronic ester)s by<br>Suzuki polycondensation. Polymer Chemistry, 2013, 4, 895.                                                               | 3.9          | 18        |
| 40 | Anthraceneâ€Containing Wideâ€Bandâ€Gap Conjugated Polymers for Highâ€Openâ€Circuitâ€Voltage Polymer S<br>Cells. Macromolecular Rapid Communications, 2013, 34, 1163-1168.                                                 | Solar<br>3.9 | 18        |
| 41 | Efficient Ternary Organic Solar Cells with a New Electron Acceptor Based on<br>3,4-(2,2-Dihexylpropylenedioxy)thiophene. ACS Applied Materials & Interfaces, 2020, 12, 40590-40598.                                       | 8.0          | 18        |
| 42 | Synthesis and photovoltaic behaviors of benzothiadiazole- and triphenylamine-based alternating copolymers. Polymer, 2012, 53, 324-332.                                                                                    | 3.8          | 17        |
| 43 | The side chain effect on difluoro-substituted dibenzo[a,c]phenazine based conjugated polymers as donor materials for high efficiency polymer solar cells. Polymer Chemistry, 2015, 6, 1613-1618.                          | 3.9          | 17        |
| 44 | Ethynyleneâ€containing donor–acceptor alternating conjugated polymers: Synthesis and photovoltaic<br>properties. Journal of Polymer Science Part A, 2013, 51, 383-393.                                                    | 2.3          | 16        |
| 45 | Vinylene- and ethynylene-bridged perylene diimide dimers as nonfullerene acceptors for polymer solar cells. Dyes and Pigments, 2017, 146, 143-150.                                                                        | 3.7          | 16        |
| 46 | Molecular modeling of poly(p-phenylenevinylene): Synthesis and photophysical properties of oligomers. Journal of Polymer Science Part A, 2007, 45, 911-924.                                                               | 2.3          | 15        |
| 47 | The design of highly efficient polymer solar cells with outstanding short-circuit current density based on small band gap electron acceptor. Dyes and Pigments, 2018, 150, 363-369.                                       | 3.7          | 15        |
| 48 | Enhancing the Performance of Polymer Solar Cells by Using Donor Polymers Carrying Discretely<br>Distributed Side Chains. ACS Applied Materials & Interfaces, 2017, 9, 24020-24026.                                        | 8.0          | 14        |
| 49 | Simple dithienosilole-based nonfused nonfullerene acceptor for efficient organic photovoltaics.<br>Dyes and Pigments, 2021, 184, 108789.                                                                                  | 3.7          | 14        |
| 50 | Insights into out-of-plane side chains effects on optoelectronic and photovoltaic properties of simple non-fused electron acceptors. Organic Electronics, 2021, 89, 106029.                                               | 2.6          | 14        |
| 51 | Polythiophenes with Carbazole Side Chains: Design, Synthesis and Their Application in Organic Solar<br>Cells. Macromolecular Chemistry and Physics, 2010, 211, 948-955.                                                   | 2.2          | 13        |
| 52 | Side chain effect of nonfullerene acceptors on the photovoltaic performance of wide band gap polymer solar cells. Synthetic Metals, 2016, 220, 578-584.                                                                   | 3.9          | 13        |
| 53 | Finely designed medium-band-gap polymer donor with judiciously selecting chalcogen atom for high efficiency polymer solar cell. Dyes and Pigments, 2017, 141, 342-347.                                                    | 3.7          | 13        |
| 54 | Performance Enhancement of Polymer Solar Cells by Using Two Polymer Donors with Complementary<br>Absorption Spectra. Macromolecular Rapid Communications, 2015, 36, 1348-1353.                                            | 3.9          | 12        |

CUIHONG LI

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Designing High-Performance Nonfused Ring Electron Acceptors <i>via</i> Synergistically Adjusting<br>Side Chains and Electron-Withdrawing End-Groups. ACS Applied Materials & Interfaces, 2022, 14,<br>21287-21294.        | 8.0  | 12        |
| 56 | Stabilization and Large Nonlinearity of Gold Nanoparticles Functionalized with a π Onjugated<br>Polymer. ChemPhysChem, 2009, 10, 2058-2065.                                                                               | 2.1  | 11        |
| 57 | Engineering the band gap and energy level of conjugated polymers using a second acceptor unit.<br>Polymer Chemistry, 2014, 5, 5037-5045.                                                                                  | 3.9  | 11        |
| 58 | Efficient polymer solar cells processed by environmentally friendly halogen-free solvents. RSC<br>Advances, 2016, 6, 39074-39079.                                                                                         | 3.6  | 11        |
| 59 | Extended ï€-conjugated perylene diimide dimers toward efficient organic solar cells. Dyes and<br>Pigments, 2020, 183, 108736.                                                                                             | 3.7  | 9         |
| 60 | End-group modification of non-fullerene acceptors enables efficient organic solar cells. Journal of<br>Materials Chemistry C, 2022, 10, 10389-10395.                                                                      | 5.5  | 8         |
| 61 | Induced helix formation and stabilization of a meta-linked polymer containing pyridine units. Journal of Polymer Science Part A, 2007, 45, 1403-1412.                                                                     | 2.3  | 7         |
| 62 | Bis(carboxylate) substituted benzodithiophene based wide-bandgap polymers for high performance nonfullerene polymer solar cells. Dyes and Pigments, 2019, 162, 120-125.                                                   | 3.7  | 7         |
| 63 | Polymer Photovoltaic Cells Based on Polymethacrylate Bearing Semiconducting Side Chains.<br>Macromolecular Rapid Communications, 2012, 33, 2097-2102.                                                                     | 3.9  | 5         |
| 64 | Effect of bifurcation point of alkoxy side chains on photovoltaic performance of<br>5-alkoxy-6-fluorobenzo[ c ][1,2,5]thiadiazole-based conjugated polymers. Solar Energy Materials and<br>Solar Cells, 2016, 154, 42-48. | 6.2  | 5         |
| 65 | The effect of meta-substituted or para-substituted phenyl as side chains on the performance of polymer solar cells. Synthetic Metals, 2016, 220, 402-409.                                                                 | 3.9  | 3         |
| 66 | Data on the detail information of influence of substrate temperature on the film morphology and photovoltaic performance of non-fullerene organic solar cells. Data in Brief, 2017, 14, 531-537.                          | 1.0  | 3         |
| 67 | Malachite Green Derivative–Functionalized Single Nanochannel: Lightâ€andâ€pH Dualâ€Driven Ionic Gating<br>(Adv. Mater. 46/2012). Advanced Materials, 2012, 24, 6192-6192.                                                 | 21.0 | 0         |